

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 723810

D9.10 – Quality Assurance Plan

Project Acronym NIMBLE

Project Title Collaboration Network for Industry, Manufacturing,
Business and Logistics in Europe

Project Number 723810 (H2020)

Work Package WP9: Project Management

Responsible author Wernher Behrendt (Salzburg Research)

Dissemination Level Confidential (consortium & Commission services)

Contractual Delivery Date 30.11.2016

Actual Delivery Date 18.01.2017

Version V.4.0

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 2 /25

Table of contents
Table of contents ... 2	
Document Information ... 3	
NIMBLE in a Nutshell ... 4	
Executive Summary ... 5	
1	 Summary of Project Objectives .. 6	

1.1	 Milestones of the Project .. 8	
2	 Summary of Project Risks and Mitigation Measures .. 9	
3	 Summary of QA Procedures ... 12	

3.1	 QA for Deliverables .. 12	
3.2	 QA for Research Results / Papers ... 13	
3.3	 QA for Software .. 13	

3.3.1	 Requirements Definition .. 13	
3.3.2	 Software Design .. 14	
3.3.3	 Source code management .. 15	
3.3.4	 Configuration management ... 15	
3.3.5	 Documentation management .. 16	
3.3.6	 Testing and validation ... 16	
3.3.7	 Release management ... 17	
3.3.8	 Issues management .. 18	
3.3.9	 Software Design and Development Methods .. 19	
3.3.10	 QA for Security ... 20	

4	 Project Infrastructure ... 22	
4.1	 Communication .. 22	
4.2	 Collaboration .. 22	
4.3	 Development & Testing .. 23	
4.4	 Administration ... 23	

4.4.1	 NIMBLE Office .. 23	
4.4.2	 Financial Management and Resource Controlling .. 24	

5	 Appendix – QA Template for Reviews of Deliverables ... 25	

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 3 /25

Document Information

Project NIMBLE (H2020-723810)
Identifier NIMBLE-D9.10
Author(s): Wernher Behrendt (Salzburg Research)
Document title: NIMBLE Quality Assurance Plan
Source Filename: NIMBLE_D9_10_Nimble_QA_Plan_20170118.docx
Dissemination level Confidential (consortium & Commission services)

Document context information

Work package/Task Task 9.3
Responsible person and
project partner:

Wernher Behrendt (Salzburg Research)

Quality Assurance / Review

Name / QA / Release /
Comment

Violeta Damjanovic-Behrendt, Benny Mandler (IBM)
Ready for release

Citation information

Official citation NIMBLE Consortium (2016), NIMBLE Project QA Plan

Document History

V Name Date Remark
1.0 W. Behrendt 31.10. 2016 Initial QA Plan – Draft
2.0 QA Team 10.01. 2017 Comments on QA Plan
3.0 W. Behrendt 14.01. 2017 Final contributions included (Software QA)
4.0 W.Behrendt 18.01. 2017 Final proof-read, edits and submission

Copyright Notice

This document contains material, which is the copyright of certain NIMBLE consortium par-
ties, and may not be reproduced or copied without permission. The commercial use of any
information contained in this document may require a license from the proprietor of that in-
formation. Neither the NIMBLE consortium as a whole, nor a certain party of the NIMBLE
consortium warrant that the information contained in this document is capable of use, nor
that use of the information is free from risk, and accepts no liability for loss or damage suf-
fered by any person using this information.
Neither the European Commission, nor any person acting on behalf of the Commission, is
responsible for any use that might be made of the information in this document.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 4 /25

The views expressed in this document are those of the authors and do not necessarily reflect
the policies of the European Commission.

NIMBLE in a Nutshell
NIMBLE is the collaboration Network for Industry, Manufacturing, Business and Logistics in
Europe. It will develop the infrastructure for a cloud-based, Industrie 4.0, Internet-of-things-
enabled B2B platform on which European manufacturing firms can register, publish machine-
readable catalogs for products and services, search for suitable supply chain partners, nego-
tiate contracts and supply logistics. Participating companies can establish private and secure
B2B and M2M information exchange channels to optimise business work flows. The infra-
structure will be developed as open source software under an Apache-type, permissive li-
cense. The governance model is a federation of platforms for multi-sided trade, with manda-
tory interoperation functions and optional added-value business functions that can be provid-
ed by third parties. This will foster the growth of a net-centric business ecosystem for sus-
tainable innovation and fair competition as envisaged by the Digital Agenda 2020. Prospec-
tive NIMBLE providers can take the open source infrastructure and bundle it with sectorial,
regional or functional added value services and launch a new platform in the federation. The
project started in October 2016 and will last for 36 months.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 5 /25

Executive Summary
This is the quality assurance plan D9.10 of the NIMBLE project summarizing and detailing
relevant sections of the DoA.
It serves also as a handbook for researchers and managers in the NIMBLE project.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 6 /25

1 Summary of Project Objectives
To deliver the envisaged NIMBLE platform, we have to achieve five high-level objectives:

• Develop the NIMBLE collaboration infrastructure with core services;
• Ensure ease-of-entry and ease-of-use of the platform;
• Grow the use of the platform - this is a top-priority - see our impact strategy!
• Enhance NIMBLE functionality from the core services and ensure that firms master it on

their own;
• Ensure trust in the platform – this requires synthesis of security, privacy, reputation and

information quality.

The following tables show a more detailed view of the objectives:

1. Develop the collaboration infrastructure with core services à to be developed by month
10

1.1 Establish with stakeholders, the requirements for core services of the platform. Establish
with the stakeholders early success criteria. (Please see the impact section for metrics of
early uptake)

1.2 Design the top-level architecture and modules. We will be guided by the Industrial Internet
Reference Architecture (IIRA) and the Reference Architecture Model Industrie 4.0 (RAMI)

1.3 Use permissive open source software wherever possible. We have analysed Apache and
FIWARE and will base the work in NIMBLE on existing tools that have a combined value of
over 100m €1.

1.4 Deploy the basic infrastructure with core services, to industrial use case partners in the con-
sortium

1.5 Learn from early validation (release early, release often approach)
2. Ensure Ease of Entry and Ease of Use à to be demonstrated in month 15
2.1 A company can publish its product catalogue in bulk or via semantic product descriptions, at

different levels of granularity and completeness.

2.2 Two companies can establish private, encrypted information channels for a business col-
laboration. In NIMBLE phase two, arbitrary supply chains can be established between any
number of firms.

2.3 Services for matchmaking between producers and consumers (B2B, B2C) are available to
establish business collaborations fast.

2.4 Joint planning and real-time adjustment of contractual commitments to gain mutual benefits
from shared information leading to optimized re-planning, instead of sticking to outdated
default plans.

2.5 Data collection, management and analytics: Firms can choose data collecting, management
and analytics services freely, from different providers that are all available on the same plat-
form.

1 According to the estimation method used by openhub: e.g. https://www.openhub.net/p/cloudfoundry/estimated_cost

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 7 /25

3. Growing the use of the platform à 100+ early adopters testing the platform services by
month 24

3.1 Each of the use cases demonstrates benefits for businesses of the sector (white goods,
textiles, furniture, ready-built homes) leading to a “me too” effect

3.2 Start early adopter scheme, recruiting external industrial users of the platform

3.3 Provide a core software tool set to initiate the software supply side of the platform

3.4 Continually improve business integration pushing further down barriers to entering the plat-
form

3.5 Ensure “balanced multi-sidedness” of the platform by specialising the integration tools to the
needs of different sectors (manufacturing, retail, logistics, etc.).

4. Mastering the platform and achieving higher maturity levels à advanced services by
month 30

4.1 Develop a methodology for establishing B2B collaboration with the help of asset virtualiza-
tion mechanisms, going from enterprise level to operations management down to shop-floor
control

4.2 Adapt collaboration methodologies for SMEs that are on varying digitalization levels on ISA-
95 hierarchy or that have no digitalization at all, yet.

4.3 Establish rules of governance - ideally, these will emerge as platform-etiquette

4.4 Establish KPIs and benchmark methods – the platform will automate many of these meth-
ods

4.5 Based on benchmarks, establish measures of the economic value of the platform and its
services

4.6 Develop novel features of the platform and encourage others through the open source ap-
proach, to join our development efforts and to add further common value

5. Ensuring Trust, Security, Privacy, Reputation and Information Quality à from day one !
5.1 The platform will support user-adjustable levels of security and privacy in order to maintain

customer trust in balance with ease of use

5.2 The platform will be designed modular and resilient so that security breaches can never
“sink the whole ship”

5.3 Data storage must be entirely at the owner’s control - from cloud to storage on personal
devices

5.4 Strength of encryption will be controlled by the business actors who communicate

5.5 The platform will be develop as a federated ecosystem. The principle of subsidiarity will en-
sure co-opetition and service innovation. This “many-sidedness” will contribute to its overall
stability.

5.6 Grow trust on the platform by a) fair gain distribution among the platform sides; b) maintain-
ing strict interoperability; c) providing privacy in B2B communication and data exchange

5.7 Information quality will be a fundamental value to be maximised in the platform. Wherever
possible this will be achieved by automation and semantic modelling.

The objectives will be revisited at quarterly meetings to ensure work progress is in line.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 8 /25

1.1 Milestones of the Project

As can be seen from the milestones, we expect to have a core NIMBLE system up and run-
ning before the end of the first project year.
The milestones are in line with the project work plan and with the project objectives and are
of course, also revisited in quarterly progress reviews.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 9 /25

2 Summary of Project Risks and Mitigation Measures
Foreseen critical risks are reported in the “Critical Risks” section of SyGMa, the Commis-
sion’s system for continuous reporting:

https://ec.europa.eu/research/participants/grants-app/reporting/DLV-723810

For the sake of redundancy, these are:

RISK

Probability Impact Mitigation approach

IBM as re-
search partner
and cloud pro-
vider leaves the
consortium

Low

High IBM ISRAEL offers a great variety of solutions,
and IBM ISRAEL has strong experience with
cloud centric solutions. IBM assessed the innova-
tion potential of NIMBLE and committed to the
project. The credibility of the company is beyond
doubt. In the very unlikely case of IBM leaving the
consortium they would give the consortium a
grace period of at least 6 months in which a sub-
stitute could be found. If no substitute can be
found within the grace period then the continua-
tion of the project has to be re-assessed.

Failure in ac-
quiring the

planned number
of early

adopters for the
NIMBLE plat-

form

Probability:
Medium

Impact:
High

This is a critical risk because the consortium
commits to the presented approach and the pro-
posed transition from dissemination-driven re-
cruitment to self-sustained growth of the platform
is an unknown for European projects in this pro-
gramme line. This is why we designed the AM-
BASSADOR and SEED initiatives as described in
Impact and as executed in WP8. This will be led
by Innova, who have a track record for the valori-
sation of R&D results. A mitigating aspect of not
achieving the high adoption rates lies in the de-
sign of the Work Plan: the core services of NIM-
BLE will remain available as permissive open
source for uptake by developer communities and
other projects. Salzburg Research as coordinator
of the successful IKS project has experience with
mobilising stakeholder communities in such a
project.

Results that
cannot be
adopted by
small and micro
SMEs easily

Probability:
Low

Impact:
Medium

We dedicate resources in WP2 and WP3 to de-
sign and develop intuitive user interfaces in addi-
tion to simplified programming level interfaces
targeting ICT providers. We also have a separate
work package (WP4) for collecting feedbacks
from end users about the core platform features

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 10 /25

Probability: Low
Impact: Medium

that would enable us to revise them addressing
SMEs’ requirements.

Failure in man-
aging heteroge-
neous data pro-

duced in use
cases

Probability:
Low

Impact:
Medium

In order to deal with the variety, size and velocity
of data, we will use proven solutions provided by
open source communities and project partners:
Metadata registry used in e-health and security
domains for data modelling; open source estab-
lished solutions for streaming, persistence, ana-
lytics; lifecycle data management framework al-
ready used in various industry sectors such as
food, and machinery.

Use case re-
quirements are
not well under-
stood and plat-
form features
do not meet the
actual require-
ments of end
users

Probability:
Low

Impact:
Medium

In addition to requirement specification (WP1)
and user interface design (T2.5), NIMBLE tech-
nology providers will have face-to-face meetings
with end users in order to eliminate misunder-
standings on the needs of end users. Further-
more, WP4 will give the chance to end users to
provide their feedback guiding the platform de-
velopment in line with their needs.

Inadequate lev-
el of trust and
security

Probability:
Low

Impact:
High

NIMBLE will follow the security by design princi-
ple in order to ensure the technical security of
core platform components and services provided
through the platform. NIMBLE will also ensure
trust of platform participants by employing fair
gain distribution and reputation management
measures. In particular, the holistic approach
including information quality has high innovation
potential and the partners involved have the nec-
essary experience to create a solution that goes
beyond the state of the art.

Failure in
measuring and
achieving the
expected im-
pacts

Probability:
Medium

Impact:
High

The evaluation strategy introduced in the Meth-
odology Section will be elaborated in WP1 by
definition of qualified and quantified KPIs on
business and operational levels. The product
lifecycle data management and lifecycle estima-
tion tools will enable us to collect data required
for calculating the KPI and measure them accu-
rately.

Delays on the
time of task
deliverables
that are prereq-
uisites of other
tasks

Probability:
Medium

Impact:
Medium

NIMBLE partners are involved across different
WPs and effective knowledge transfer will be
established in order to resolve dependencies and
integrate WP results. Furthermore, NIMBLE will
follow iterative prototype cycles to manage these
dependencies efficiently and a detailed work plan
with Deliverables and Milestones allowing for
frequent monitoring of progress. Strict govern-

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 11 /25

ance structure and strict procedures are to be
agreed upon and documented in the Consortium
Agreement based on MCARD-2020.

A key technolo-
gy partner
leaves consorti-
um

Probability:
Low

Impact:
Medium

Even if a partner leaves who has critical respon-
sibilities in the development process, the NIMBLE
platform will be designed in such a way that any
component of the platform will be provided by
new partners to be found. The special case of
IBM is discussed separately, at the top of the risk
list.

Conflicts in the
consortium

Probability:
Medium

Impact:
Low

A solid Consortium Agreement is established with
well-defined roles and tasks, use of MCARD-
2020 Consortium Agreement to provide clarity.

All risks are continuously monitored by the project co-ordinator.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 12 /25

3 Summary of QA Procedures

3.1 QA for Deliverables

We develop all deliverables initially online, using the Confluence collaboration platform es-
tablished by the co-ordinator.
We expect a first content description typically three months after the relevant task has start-
ed. Six weeks before the deadline, a first draft of the deliverable must be issued to the con-
sortium. Named QA reviewers have to comment on that draft. Three weeks before the dead-
line, an improved close-to-final draft has to be issued. The final draft must reach the coordi-
nator one week before the deadline. The coordinator performs a final QA and does final edits
if necessary and then submits the deliverable as set out in the deliverable plan.

(1) First draft released to consortium for comment 6 weeks before deadline

(2) Close-to-final draft to named QA group (min. two) 3 weeks before deadline

(3) Final draft to coordinator for final QA and submission 1 week before deadline

The initial document structure should be developed on the project’s Collaboration Platform,
together with relevant background material that can also be uploaded (see section 4 of this
document for a description of the platform).
The first draft (1) can still be a collaborative document on the platform or a Google doc or a
Word document. Approximately two-thirds of the final text should already be in place, maxi-
mum one-third of the sections may still be bullet points still to be developed into a coherent
narrative.
The close-to-final draft (2) must contain the full text, it may still lack some references and it
need not be copy-edited yet. The internal QA reviewers must be able to act as independent
peer reviewers on the basis of this draft. The review should be done within one working week
If the QA review suggests that significant re-work is still required then at this stage the project
board may decide to request a delay of the deliverable by one month. A recommendation to
do so should come from the QA review panel of the deliverable and has to be reported to the
PO for approval.
The Final Draft (3) of each deliverable must be sent to the co-ordinator two weeks before
the deadline. The co-ordinator is always responsible for a final QA and for upload (submis-
sion) to the Participant Portal. If the co-ordinator is not satisfied with the quality of the deliv-
erable at this stage, the project board will convene to decide whether the deliverable should
be submitted in its present state or whether a one-month delay should be reported in order to
improve the deliverable.
The template for QA review is in the appendix of this QA guide and it is also available online
on the Project Collaboration Platform:
https://secure.salzburgresearch.at/wiki/display/NIMBLE/NIMBLE+QA+Guidelines

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 13 /25

3.2 QA for Research Results / Papers

The reality of research life is that deadlines for papers are tight and as a result, lengthy inter-
nal approval procedures either stifle the production of research papers or get ignored. There-
fore, we keep our procedures light:

a) Researchers are requested to announce plans to write papers as early as possible
b) Papers should be uploaded to the collaboration platform before submission, for in-

formation and to give industrial partners an opportunity to check w.r.t. IPR protection
c) Researchers are encouraged to produce papers jointly with others
d) Participation of industry partners is particularly encouraged
e) When specific industry related topics are discussed, relevant industrial partners

should be involved in the description, to ensure IP protection as well as correctness
f) Papers need to include standard acknowledgement of EC H2020 funding and a ref-

erence to the NIMBLE project
g) For all research achievements there should be adequate documentation in the public

domain. The issuing of open access technical reports and white papers is encour-
aged for this purpose.

h) All technical publications should carry a note describing the kind of reviewing which
the publication has undergone.

i) A disclaimer of no warranties for third parties following any of the described proce-
dures is mandatory.

3.3 QA for Software

The software quality assurance process has to cover requirements definition, software de-
sign, source code management, configuration management, testing and release manage-
ment. Additionally, since part of the development in NIMBLE is research-oriented, we need to
develop a good understanding of the maturity of modules that are being assembled to make
up the NIMBLE platform. This will be achieved by emphasizing the importance of design and
code reviews.

3.3.1 Requirements Definition

Research projects tend to develop an imbalance between requirements and actual running
software. The problem can be described as follows: research partners have a bias towards
recognising requirements that are closely related to their research focus, and tend to have
blind spots for issues lying outside their research focus. Industrial user partners sometimes
project their wish list of silver bullets into the research prototype to be developed. Industrial
software partners tend to either solve the new problems with existing tools or are trying to
develop new products with modest regard for the core needs of the project.
The net effect of these tendencies is often an excessively large requirements document that
bears little resemblance to the actual designs and the actual working software. We regard
this as a crucial difference between standard software development and software develop-
ment in a large-scale research project.
Therefore, our focus is on maintaining at all times, a good balance between requirements
gathered, designs created and actual working code.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 14 /25

The clearest path towards meaningful requirements is to firstly, meet up with the owners of
the use case scenarios and see them at work, in their respective environments. Workshops
with all use case scenario owners are planned, involving also technical partners.
The challenge then is to derive horizontal (valid for all or many user communities) and verti-
cal requirements (valid for specific user scenarios, but not necessarily for others).
NIMBLE faces an additional challenge because it also needs to bear in mind the require-
ments that come from managing a large B2B collaboration platform, which is a business in its
own right. We identified this as an important driver for new requirements and will contact ex-
isting providers of B2B platforms for collaboration, even to offer NIMBLE technology for in-
clusion into existing platforms (“Nimble inside” approach).
The requirements space is thus bounded by the expectations of stakeholder communities:

- project reviewers on behalf of the European Commission with regard to the proposed
action

- use case owners and their supply chain partners
- third-party software providers hoping to benefit from the NIMBLE eco-system
- early adopter businesses subscribing to a NIMBLE platform
- providers of a NIMBLE platform running the platform as a business for profit
- providers of a NIMBLE platform offering the platform as a regional infrastructure
- providers of other B2B platforms wishing to adopt relevant NIMBLE technology

Our QA approach towards this space is to have an explicit attribution of requirements to
stakeholder groups.

3.3.2 Software Design

Our software design methodology uses top-down and bottom-up techniques to achieve the
previously mentioned balance between requirements, designs and running software.
The technical group in NIMBLE frames the overall problem space of developing a large-scale
business collaboration platform. This is driven top-down, by the designs presented in the
project proposal and in the DoA.
It is still debatable whether software engineering is already at the level of other industrial en-
gineering disciplines, in terms of reproducible quality through well-defined methods. It is even
more debatable whether research consortia can achieve such levels of reproducible quality
despite limiting factors such as temporary collaboration for the duration of funding, the dis-
tributed and heterogeneous setup of partners, unclear requirements due to the research
character of the action, etc.
However, it is clear that any unstructured work environment can profit from the introduction of
structure and here are our measures:

• The design process has started top-down, by framing the problem space of the B2B
platform. This process is driven by the technical partners.

• This top-down process is met by a bottom-up process gathering the specific require-
ments of each of the use cases, which is driven by the main problem owners.

• There is a “middle-out” process addressing the generalizable aspects of user re-
quirements, in particular the issues of collaboration in supply chains and of business
models and how they can be supported and adapted. This process is managed by
Lulea University (LTU).

• A specific issue concerns the use of advanced technologies ranging from explicit se-
mantic models to AI based, unsupervised learning methods and the potential of block
chain technology. For these, our approach is to design for functional modularity so

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 15 /25

that business functions can be supported either by an advanced technology or by
more traditional means. In the interest of wide acceptance, we need to keep user ex-
posure to technological risks at a minimum – this is a balancing act for a research
project. We support it managerially, by separating “core business services” (WP3)
from “advanced services” (WP5).

• We are holding regular virtual meetings for WP2 (design) and WP3 (development) to
discuss the current design and its relationship with requirements coming from WP1.

• Additionally, we use mock-up techniques to present designs early, to the potential
users and to prompt them for feedback.

3.3.3 Source code management

The source code of the core business services developed in NIMBLE is licensed under the
Apache License 2.0, a permissive open source license. We therefore selected github.com as
our major source code repository. It supports all versioning control features of the git2 source
code management system including a web-based user interface and an issue tracking sys-
tem. Due to the open source character it also allows easy integration with many other soft-
ware development tools.
The “gitflow workflow”3 will be used, which defines a strict branching model designed around
the project release. Development and bug/issue fixing is done in separate branches. Merging
into the ‘master’ branch is done via “pull requests”, which must include a code review by at
least one of the core developers, after all unit tests have been passed.
The public NIMBLE git repositories will be hosted under the address
https://github.com/nimble-platform.
In addition, the git repositories provided by the Bluemix DevOps Services are available for
the source code management and delivery of non-public code developed within the NIMBLE
consortium.

3.3.4 Configuration management

Central configuration in distributed systems is necessary in order to lower the administrative
overhead for configuring each individual service. Especially in the microservices approach a
configuration management plays an important role, because services are loosely coupled
with each other.
We are using Spring Cloud Config4 as central configuration service. It reads settings from a
single git repository and provides a RESTful interface for fetching individual configurations.
Storing configurations files in a version control system (e.g. git or svn) comes with many
benefits, such as version control, track of changes or code review functionalities. Each ser-
vice fetches appropriate settings from the configuration service during start up and is being
notified in case of changes.

2 http://git-scm.com/
3 https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
4 https://cloud.spring.io/spring-cloud-config/

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 16 /25

3.3.5 Documentation management

We will give special importance to the documentation in varying levels and modes as one of
the major determinants of software quality, which would in turn lead to ease-of-use and high
adoption of project results.
We will ensure clear categorization of the documentation so that users will be able to locate
the most appropriate documentation for themselves. There will documentation for different
target groups including industry firms desiring to benefit from the core and advanced services
of NIMBLE; software developers desiring to develop their own modules using NIMBLE open
source modules; and platform multipliers desiring to deploy a new instance of NIMBLE.
In addition to short and useful “Get Started” tutorials, we will prepare advanced tutorials with
detailed information for performing specific tasks such as API consumption and platform mul-
tiplication.
At the finest level, we have documentation about the source code within the source code
itself. Specific to the Java programming language, which is the main language we will be
using in NIMBLE, we use Java Docs5 as a self-explanatory documentation for individual
source code modules. It is also possible to export this embedded documentation as a pack-
age that can be explored online. Furthermore, in order to ensure that the produced source
code has a certain quality level, we will utilize continuous source code quality tools, like So-
narQube6, in conjunction with our continuous integration mechanism.
Software development is a living thing. In this respect, we will ensure soundness of docu-
mentation content by keeping it up-to-date and relevant in accordance with the latest ad-
vancements; and completeness of documentation by producing documentation for new soft-
ware modules. Latest documentation will be publicly available on the NIMBLE web-site and
source management platform, i.e. GitHub.

3.3.6 Testing and validation

The essential parts of software quality evaluation are the quality model, the method of evalu-
ation, software measurement, and the supporting tools. To develop good software, quality
requirements are specified, the software quality assurance process is planned, implemented
and controlled, and both intermediate products and end products are evaluated.
NIMBLE software testing activities will use the Software Product Quality Evaluation Refer-
ence Model (SQuaRE) which describes the process, activities and tasks performed during
the quality evaluation of a software product. This reference model is defined by the standard
ISO/IEC 250407 that contains general requirements for specification and evaluation of soft-
ware quality. As a practical outcome, it introduces a set of Evaluation Modules (EM) some of
which we will use for categorizing our testing activities as follows:

• EM1 – Unit tests: These are standalone tests that verify if the components func-

tion(s) under test meet the requirements. For the evaluation, unit tests will be imple-

5 http://www.oracle.com/technetwork/java/javase/documentation/index-jsp-135444.html
6 https://www.sonarqube.org/
7 http://www.iso.org/iso/catalogue_detail.htm?csnumber=35766

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 17 /25

mented by the developers along with the creation of the code. With these unit tests,
we can ensure that all the different pathways of the components are exercised.

• EM2 – Integration tests: Integrations tests are intended to test Web Services or
RESTful services of NIMBLE components through the HTTP protocol. These tests
ensure that the NIMBLE microservices expose their functionalities to the outside
world and process the incoming requests successfully. Furthermore, by developing
such tests, we will be sure that NIMBLE components can communicate seamlessly
through their HTTP based services.

• EM3 – Fault tolerance analysis: Constructing a dependable and fault-tolerant sys-
tem is inherently difficult. Not only should the system work under normal circum-
stances, but must also continue operation and provide potentially degraded service
under hostile circumstances. This evaluation module will evaluate the degree of fault
tolerance of each NIMBLE components, by testing the system through erroneous in-
put cases.

• EM4 - Execution Time Measurement: The time of execution that the components
actions take can have a great impact on the user experience. So, this module evalu-
ates if the components perform in a way that provide the functionalities fast enough to
the end-user, and the user has the feeling to work fine with the tool without waiting
time. For this, execution time of the selected critical use cases for our end users will
be measured.

• EM5 - User Interface Inspection: This evaluation module has the purpose of as-
sessing the usability of the user interface.

Our continuous integration mechanism will ensure that the first three evaluation modules will
be executed automatically when an update is done on the NIMBLE source code. Logs about
EM4, execution time measurement of services, will be collected via the Netflix Hystrix8, which
is a specific module gathering measurements about different metrics related to health condi-
tion of software services. As additional quality and performance indicators, we will keep track
of parameters like failure rate of services, number of requests per second, etc. will be defined
and monitored.

3.3.7 Release management

For initial development, there will be Production (release) / Master / development branches:

• Development branches are used to develop individual software modules;
• The master branch is used to integrate the individual updates with the rest of the

source base and get the complete stack into a stable state;
• the production branch keeps the latest released and working version.

Third party libraries are checked for their licenses so that they would not violate the per-
missiveness of the source code.

Each release will refer to the list of implemented features; list of fixed bugs, resolved is-
sues showing the updates as of the previous release; checksum (MD5) and a signature
(ASC) to check the validity of the released files.

Each release will have a name indicating the released module(s) and uniquely identified
with a version number.

8 https://github.com/Netflix/Hystrix

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 18 /25

Released source code will be published online and binaries of the source are also asso-
ciated with the source code files.

Regarding the granularity of releases (releasing individual components vs. releasing the
stack as a whole): We can choose an intermediate granularity level such that we would
release the NIMBLE core as a whole, but software modules implementing advanced
functionalities could be released separately.

Once the NIMBLE platform is running and in use, the managing of releases built with micro-
services begins to play a vital role, because single services are being released independently
of each other. Despite these independent releases, we will enforce homogeneous release
workflows for core business services in order to ensure consistent quality measurements.
New versions of single microservices have to pass a defined continuous delivery pipeline
before being released, using the canary release technique: after deploying a new version
only a small part of the overall traffic is routed to the new version (see Figure 1).

Figure 1: Canary releases for deploying new version of Microservices.
Source: https://martinfowler.com/bliki/CanaryRelease.html (Jan. 2017)

This technique allows stakeholders to rollback faulty releases without affecting the majority of
users. The ratio of requests routed to the new version is continuously increased until it has
reached 100%. Continuous integration in combination with canary releases allows develop-
ers to safely follow the release early, release often paradigm.

3.3.8 Issues management

For issue management, we will use the built-in capabilities of the GitHub platform. GitHub
allows keeping track of issues opened both by the NIMBLE developers as well as external
users outside the NIMBLE consortium. It is possible to assign issues to specific developers
and annotate/filter them with standard labels like “bug”, “enhancement”; or with custom labels
based on specific needs. Milestones can be defined to group issues with respect to module,
feature, or time period.
GitHub also provides dashboard views in order to see the statistics about the issues includ-
ing opened/closed “Pull requests”, opened/closed issues within a particular range; also over-
view pages where issues assigned to/created by a particular user can be seen.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 19 /25

3.3.9 Software Design and Development Methods

Usability and User Experience

In general a user-centered design shall be pursued. It is an iterative design process for prod-
ucts and systems centered on the users, their tasks and environment. When properly ap-
plied, it reduces the development time and costs, increases the quality of the product, avoids
unnecessary or unwanted features, detects problems at an early stage and balances usabil-
ity and user experience factors.

Figure 2 – The User-centered design cycle

The three-stage process consists of:

• Analysis
Analysis is essential since expressing and communicating needs is difficult. Various
analysis tools exist, such as information and literature research, task analysis, cultural
probing, personas and scenarios.

• Design
The design stage includes merging analysis results and defining what is needed for
the implementation and how to measure the success. Therefore, conceptual models,
storyboards and use cases are key elements. Continuous prototyping helps to create
and evaluate requirements. Prototypes are categorized into low (no detail, quick
overall feedback), medium (more detail, design feedback) and high fidelity (close to
final product, usability feedback) depending on their degree of detail.

• Evaluation
Evaluation is needed in order to rate previous decisions, identify usability and user
experience issues and create new ideas. The two main evaluation categories are ex-
pert (experts rate and improve usability factors based on heuristics) and user tests
(qualitative or quantitative data is derived from various evaluation methods; e.g.: in-
terview, questionnaire, focus group, observation, benchmarking, thinking aloud). For
user tests it is important to conduct pilot tests, create detailed test plans and record all
data (e.g. by transcript, audio/video recording, software logging). The evaluation re-
sults serve as a basis for the next iteration. Depending on the severity of the detected
issues, one may draft new prototypes, go back to the design process or even expand
the analysis.

Relevant guidelines and frameworks that can be used in order to align with user interface
and user experience design principles are listed below:

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 20 /25

• ISO 9241
A multi-part ISO standard covering ergonomics of human-computer interaction

• Human Interface Guidelines
Interface guidelines for various major platforms

• Nielsen’s Usability Heuristics
General principles for interaction design to be used for heuristic evaluation

• Bootstrap
HTML, CSS and JS framework for responsive web and mobile interfaces

Agile Project Management

In software projects requirements are constantly evolving over time. Therefore, it is neces-
sary to have an agile project management method in place in order to continuously adapt to
changing requirements. Scrum provides appropriate tools for agile project management in
software projects and defines three roles with different responsibilities: Project Owners,
Scrum Master and Developer Team. Project Owners (i.e. the product manager and use case
partners) are aware of top level requirements and review each version periodically for any
misalignments (periods are called Sprints). Improvements are communicated to the Scrum
Master, which in turn maps changes to separate issues and prioritises them for the next
Sprint. At the beginning of each period the Developer Team and the Scrum Master collabora-
tively plan issues to be solved in the upcoming Sprint, which results in a new version re-
viewed by Product Owners. This methodology achieves a good match between requirements
and implemented functionalities of the software.
A major challenge in Nimble is the distributed setting of the project. Developers are spread
across partners, which are located in different European countries. Special measures have to
be applied in order to execute distributed Scrum (e.g. the length of each Sprint must be
adapted and periodic meetings held remotely).

3.3.10 QA for Security

The NIMBLE QA plan includes the testing of the platform/applications/services security fea-
tures, e.g. how easy is to hack the platform, to overload it, to block it by DoS attacks, etc. In
NIMBLE, we will use the STRIDE threat modelling approach [1] to model scenarios to chal-
lenge the system against various attacks. These scenarios will be continuously in use for the
validation of the NIMBLE platform security features. STRIDE stands for Spoofing Identity,
Tampering with Data, Repudiation, Information Disclosure, Denial of Service, Privilege Esca-
lation (or Elevation of Privilege), and its methods provide defined sets of situations/strategies
to identify each of these six major threats, plus the corresponding mitigation techniques. The
threat mitigations (fixes) should be additionally tested and validated against the threats, too.

The identified bugs for fixing will be tracked in written form (e.g. bug ID, threat description,
risk management technique, risk acceptance, tester, status of fixes, reasons of not having it
fixed, etc.). The number of open defects, their severity level, etc. will help us to collect useful
security metrics that will further guide the platform improvements. A vulnerability scoring sys-
tem, such as CVSS (Common Vulnerability Scoring System) [2], CCSS (Common Configura-
tion Scoring System) [3] or OVAL (Open Vulnerability and Assessment Language) [4] will be
selected and used too, to i.e. communicate the characteristics and severity of software vul-
nerabilities.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 21 /25

In addition, the NIMBLE platform will be periodically tested against the defined policy compli-
ance framework. The testing schedules will be established too.

[1] STRIDE: https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx

[2] CVSS: https://www.first.org/cvss

[3] CCSS: csrc.nist.gov/publications/nistir/ir7502/nistir-7502_CCSS.pdf

[4] OVAL: http://oval.mitre.org/

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 22 /25

4 Project Infrastructure
The project is co-ordinated by Salzburg Research. The company is certified according to ISO
9001 with the last re-certification in 2016.

4.1 Communication

Official communication happens via primarily via email (plus posted letters for legally binding
documents) and the following email groups are available for all project staff:

Mailing list Topic

nimble-work@salzburgresearch.at For mails addressed to the full RTD team

nimble-wp1@salzburgresearch.at Requirements

nimble-wp2@salzburgresearch.at Specifications

nimble-wp3@salzburgresearch.at Core Service Development

nimble-wp4@salzburgresearch.at Experimentation and Initial Validation

nimble-wp5@salzburgresearch.at Advanced Services

nimble-wp6@salzburgresearch.at Trust & Security

nimble-wp7@salzburgresearch.at Validation

nimble-wp8@salzburgresearch.at Dissemination

We keep a directory of partners’ project staff on the collaboration platform, also showing who
is subscribed to which mailing list.
For conferencing, three systems are in use: Skype, Teamviewer supplied by the coordinator
and IBM’s teleconferencing suite.

4.2 Collaboration

Software development has already been described separately. For joint development of ide-
as, papers and deliverables, there are three approaches used:

- Google docs
- Word documents exchanged via email or dropbox
- The Confluence wiki-type collaboration platform

Of these, the Confluence platform is the official and central infrastructure provided by the co-
ordinator. The platform is fully maintained and backed up daily. In addition, the co-ordinator
keeps an internal project repository on a samba-share, but this is only available to Salzburg
Research staff.
The collaboration platform is available to all registered staff of NIMBLE and has the following
structure:

NIMBLE-Subspace Used for

Consortium Meetings Agenda, minutes, decisions, actions of con-

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 23 /25

sortium meetings, including attendance lists

Core Documents Contract, Work plan, consortium agreement

Decision log Executive decisions / agreements

Deliverables Final deliverables as submitted

File lists Overview page of uploaded files for NIMBLE

WP1 – WP8 subspaces Further structured into tasks, each WP also
has a meetings sub-space to record agree-
ments and actions.

WP9 (Management) This also contains the latest 6-monthly ac-
tion plans for all work packages and tasks

Internal meetings
(with subspaces for each partner)

We offer NIMBLE research groups the pos-
sibility to record internal meetings if they
wish to share. This makes sense for larger
teams, e.g. for the coordinator’s team.

4.3 Development & Testing

In addition to the standard tools available on Github and the cloud operations-related tools of
the Bluemix environment we will also make use of TeBES, the Test Bed Environment for
Standard based Interoperability. This is a modular on-line test bed for testing system interop-
erability and standards conformance. Beyond specification conformance, the system is able
to implement complex testing plans as well as interoperability testing across multiple step
collaboration. In addition, another testing system, born from the standardised CEN GITB ar-
chitecture, is fully configurable to implement complex testing plans described through stand-
ard based descriptors (TAML language and others). In NIMBLE, this tool (system) will be
updated to be delivered as a set of open source services fuelled through testing plans auto-
matically generated from business model patterns to facilitate collaboration setting up.

4.4 Administration

4.4.1 NIMBLE Office

The NIMBLE project office has a mail-alias nimble-office@salzburgresearch.at with 4 project
staff receiving the mails, including the project administrator and the project coordinator.

nimble-office@salzburgresearch.at

ursula.atzlinger@salzburgresearch.at

wernher.behrendt@salzburgresearch.at

violeta.damjanovic-behrendt@salzburgresearch.at

georg.guentner@salzburgresearch.at

There are two more mailing lists for administrative purposes:

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 24 /25

nimble-admin@salzburgresearch.at For communication among EU-project administrators

nimble-legal@salzburgresearch.at For communication concerning legal issues (was
used e.g. during negotiation of the consortium agree-
ment).

4.4.2 Financial Management and Resource Controlling

A payment schedule has been devised in order to ensure timely payment of grant monies in
line with project achievements.

For controlling purposes, the co-ordinator uses a spread sheet to monitor reported efforts vs.
planned efforts on a per-partner, per-task basis. Reporting by partners is done quarterly to
ensure timely interventions if needed.

D9.10 Quality Assurance Plan

 © NIMBLE Consortium (2017) 25 /25

5 Appendix – QA Template for Reviews of Deliverables

Review of NIMBLE Deliverable Dx.y
<Title of Deliverable>
Reviewer: <Name>, <Affiliation>

QA Main feature QA Sub-feature excel
cel-
lent

good weak
ness

very
poor

DoW Compliance

 Relevance of the work to project goals X

 Impact of results on project progress X

Research Quality

 Methodology used in the research X

 Quality of claimed results X

Quality of Presen-
tation

 Readability, e.g. appropriate wordings X

 Understandability, e.g. logic of the
presentation, ordering, structure

 X

 Use of illustrations, e.g. diagrams, ta-
bles, figures etc.

 X

Overall Recommendation (one of the following outcomes is possible)

Deliverable can be submitted
Some small changes should be made, then the deliverable can be submitted

Significant changes need to be made, I will check the deliverable again

Overall assessment and main recommendation for the authors of the deliverable

<Short description of main review points …>

Date of Submission for Review dd/mm/yyyy: Date of Review: dd/mm/yyyy

Specific comments to the authors / researchers responsible for the deliverable

This section should be as detailed as necessary to guide the authors to address important issues

<Reviewer’s signature>

