

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 1 of 45

Collaborative Network for Industry,

Manufacturing, Business and
Logistics in Europe

D5.1

Advanced Platform Infrastructure

Project Acronym NIMBLE

Project Title Collaboration Network for Industry, Manufacturing, Business
and Logistics in Europe

Project Number 723810

Work Package WP5 Value-Added Business Services for the NIMBLE
Platform

Lead Beneficiary IBM

Editor Benny Mandler IBM

Reviewers Wernher Behrend SRFG

Dissemination Level PU

Contractual Delivery Date 31/01/2020

Actual Delivery Date 31/01/2020

Version V1.0

Abstract

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 2 of 45

The NIMBLE project aims to perform research leading to the development of a cloud platform
specifically targeted to supply chain relationships and logistics. Core capabilities will enable
firms to register, publish machine-readable catalogues for products and services, search for
suitable supply chain partners, negotiate contracts and supply logistics, and develop private
and secure information exchange channels between firms. The intention is to support a
federation of such NIMBLE instances, all providing a set of core services, and each potentially
specifically tailored to a different aspect (regional, sectorial, topical, etc.).

The main goal of this document is to present the advanced platform infrastructure, which
supports added value services on top of the existing core services. The document starts from a
description of the underlying platform building blocks, proceeds to describe the manner in
which several such individual instances can be made to collaborate in a federation, and finally
presents two of the envisioned advanced services to support scenarios in blockchain based
supply chain.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 3 of 45

Document History

Version Date Comments

V0.1 20/09/2019 Initial populated version

V0.2 20/10/2019 First initial internal review

V0.3 15/12/2019 First version for review

V0.4 13/01/2020 Second version incorporating review comments

V1.0 15/01/2020 Final version

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 4 of 45

Table of Contents

1 Advanced platform .. 10

1.1 Micro-Services as a guiding principle .. 10

1.2 NIMBLE Run-time .. 14

1.2.1 NIMBLE Components Deployment .. 14

1.3 Cloud services used by the platform ... 15

1.3.1 Data management ... 15

1.3.2 Communication Bus .. 16

1.4 State-of-the-art System development deployment and integration 16

1.4.1 Technical infrastructure .. 16

1.5 Integration, deployment, and the Continuous Integration (CI) toolchain 18

2 NIMBLE Federation ... 20

2.1 Federation Requirements ... 21

2.2 Architecture High Level View .. 22

2.3 Federation Components.. 23

2.3.1 The delegate .. 24

2.3.2 Federation core services ... 24

2.3.3 Extensions to local services ... 25

2.4 Representative Flows .. 25

2.4.1 Deploy ... 25

2.4.2 Enrolment and Registration .. 25

2.4.3 Search .. 26

2.4.4 Catalogue Service .. 26

2.4.5 Business process .. 27

2.5 Access control ... 28

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 5 of 45

3 Blockchain in NIMBLE .. 28

3.1 Blockchain essentials ... 28

3.2 Blockchain for supply chain ... 30

3.2.1 Advantage of Blockchain based scenarios in the area of supply chain 31

3.3 Blockchain use in NIMBLE ... 32

3.3.1 Blockchain roles in the overall platform architecture ... 32

3.3.2 Capabilities supported in the NIMBLE platform.. 34

3.4 Supporting blockchain platform architecture ... 42

4 Summary ... 44

 List of Figures

Figure 1: Microservices approach ... 11

Figure 2: Platform deployment ... 12

Figure 3: NIMBLE components as Kubernetes (K8s) services ... 13

Figure 4: Tables in the main NIMBLE DB ... 15

Figure 5: NIMBLE Kubernetes cluster .. 17

Figure 6: NIMBLE worker nodes .. 17

Figure 7: NIMBLE cloud services ... 18

Figure 8: Deployed microservices ... 18

Figure 9: NIMBLE GitHub repository ... 19

Figure 10: CI workflow .. 19

Figure 11: CI detailed .. 20

Figure 12: A set of specialized NIMBLE instances, federated for collaboration 21

Figure 13: Federation high level view ... 22

Figure 14: Join a federation ... 26

Figure 15: Blockchain’s core - the shared ledger .. 29

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 6 of 45

Figure 16: Blockchain essentials ... 30

Figure 17: Technology Layers .. 30

Figure 18: Embodiment within NIMBLE .. 33

Figure 19: T&T support interfaces and data models ... 35

Figure 20: RFID event addition .. 36

Figure 21: batch of sensors addition ... 37

Figure 22: query for hash values ... 38

Figure 23: Query EPC history from the blockchain ... 38

Figure 24: Certificate of origin interfaces.. 39

Figure 25: adding a new invoice information.. 40

Figure 26: restore invoices added by a specific ID .. 41

Figure 27: retrieve specific invoice information ... 42

Figure 28: Blockchain network components ... 43

 List of Tables

Table 1: Acronyms ... 7

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 7 of 45

Acronyms

Table 1: Acronyms

Acronym Meaning

ACL Access Control

API Application Programming Interface

B2B Business to Business

ELK ElasticSearch, Logstash, Kibana

EPCIS Electronic Product Code Information System

GUI Graphical User Interface

IaaS Infrastructure as a Service

IDE Integrated Development Environment

IIoT/
Industrie 4.0

Industrial Internet of Things

IoT Internet of Things

K8s Kubernetes

NIMBLE Collaboration Network for Industry, Manufacturing, Business and
Logistics in Europe

PaaS Platform as a Service

REST Representational State Transfer

RFID Radio Frequency Identification

SDK Software Development Kit

SaaS Software as a Service

SDN Software Defined Network

SOA Service Oriented Architecture

TLS Transport Layer Security

VM Virtual Machine

WP Work Package

XaaS Everything as a Service

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 8 of 45

Glossary

 Camunda – BPMN workflow engine

 ElasticSearch - high-performance indexing and search system that can be integrated
with the CouchBase scalable data back-end.

 EPCIS – standard for tracking events

 Eureka (Netflix) - Service registry and discovery component

 Ingress - management of access to the services inside a k8s cluster, from entities outside
the cluster. Can provide load balancing, SSL termination and name-based virtual
hosting

 ISTIO - An open platform to connect, manage, and secure microservices. https://istio.io/

 Jenkins – automate software development stages

 Keycloak - identity and access control package

 Kibana - Data visualization for Elasticsearch based data

 Kubernetes – a platform for managing containerized workloads

 Microservices – an architectural paradigm in which an application is comprised of a
collection of loosely coupled services

 Logstash – Collect, parse and transform logs

 OAuth2 – authorization framework

 Platform-as-a-Service - a cloud computing concept which offers the developer and
deployer of cloud-based applications the infrastructure, both HW and middleware,
needed for creating and deploying successfully such applications on a cloud
environment.

 REST – A standard and interface for the operation of web services

 RFID – object tagging

 Software as a Service (SaaS) - software delivery model in which software is provided
on a subscription basis mostly hosted on a cloud and follow a pay-as-you-go model

 SPARQL – an RDF query language for semantic linked data

 SPARK – Open, distributed, real-time streams processing engine; used within the
NIMBLE data management component.

 User Account and Authentication – The Cloud Identity Management component.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 9 of 45

 YAML - human-readable configuration format

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 10 of 45

Introduction

The roadmap of the NIMBLE project called for an early establishment of a set of core services
running as a unified platform, comprising of all open source components that provide the
essential capabilities that each NMBLE instance would require. The current document describes
the later stages of the platform evolution beyond the core services.

In section 1 the description starts with the technological background of advanced hosting and
deployment of the NIMBLE platform. It provides a description of the technology and processes
used to achieve a large degree of automation in the platform deployment, resulting in a
horizontally scalable set of components and supporting cloud services. Section 2 elaborates on
the manner in which the federation of several NIMBLE instances is achieved. Section 3
introduces the blockchain technology and specifically its application in supply chain scenarios.

1 Advanced platform

The advanced version of the NIMBLE underlying platform is tailored to host and connect all the
core services and in addition to help integrate value added services that are developed on top of
the platform. The platform is designed for and hosted in a secure cloud environment.

A microservices approach was adopted to handle the extreme complexity of the project. This
approach ensures autonomy to the different components, to the extent possible, while enabling
proper interaction between different components. This approach is especially suited for a
distributed development effort, such as is the case in this project, with different groups
developing different components independently in different parts of Europe. There is a need to
keep such flexibility on the one hand while being able to provide a coherent single running
platform on the other hand. Thus, the interfaces for interaction between components are agreed
upon but the internal development of each component is left to the group working on it. For
example, each component can be developed using a different programming language as long as
the interfaces between components are respected. Thus, a popular mode of communication
between components is using REST interfaces, which was adopted by NIMBLE. Components
usually find each other with the help of a discovery service.

This architectural mode leads to a highly distributed yet not siloed design and development
process. Such a design caters to the scale required of the platform with each component being
stateless, and able to scale horizontally based on changing load.

For the deployment and orchestration medium the NIMBLE platform relies on Kubernetes
(https://kubernetes.io/), which is a container management and orchestration run-time, hosted on
a public cloud. Kubernetes enables horizontal scalability of internal components running within
it. Kubernetes (aka K8s) is an open-source system for the management of containerized
microservices forming applications. It is scalable, efficient, and robust.

1.1 Micro-Services as a guiding principle

Microservices is an architecture form and methodology for breaking up a large complex system
into small units, each fulfilling a small, unique, well-defined task, in an independent manner
(see Figure 1). Each such microservice can be deployed separately and interacts with its peer
microservices using standard communication protocols, such as REST interfaces. Such an

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 11 of 45

approach eases the task of long-term maintenance and evolution of a large system, when
compared to a monolithic system. In addition, internal changes within a microservice do not
disrupt any other system component as long as the external contract of the microservice is
adhered to. Moreover, each component can be implemented in a different programming
language, using different middleware. Thus, collaborative distributed development is made
easier.

Figure 1: Microservices approach

Such an architecture is distributed in nature thus there needs to be a way for one microservice to
find other microservices it needs to interact with, or for the orchestrating application to locate a
specific microservice. For that purpose, a service discovery component is deployed. Such a
component serves as a central registry of available microservices, responding to queries about
the location of a certain microservice. In our deployment, the Eureka1 service is used for that
purpose. In addition, as the NIMBLE components are deployed within a Kubernetes cluster, the
built-in Kubernetes Ingress gateway (reverse proxy), is used as well to directly invoke the
desired microservice by name.

In Figure 2 we can further see a complete deployment of a NIMBLE instance, comprising of the
core services, each running as an individual microservice within a Kubernetes cluster. In
addition, cloud-based services are provided in the form of messaging and different kinds of
storage to be used by the different microservices for communicating and for storing and
retrieving their state.

1 https://github.com/Netflix/eureka

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 12 of 45

Figure 2: Platform deployment

Every external entity that communicates with the platform or the entities hosted in it needs to go
through a routing layer. The chosen Kubernetes routing layer (reverse proxy) is Ingress, which
acts as a router and load balancer for the cluster. This router is in charge of maintaining the
mapping between the web address provided to external users and the real physical location in
which the respective microservice resides. In addition, in the NIMBLE platform Ingress serves
as a gateway to the microservices deployed within the cluster. It acts as the public entry point to
the Microservice, providing routing, filtering, and load balancing capabilities. Ingress manages
access to internal cluster components from the external world. It accepts external calls and
based on the requested path it knows which internal service to invoke, further knowing which
IP:port is used to serve each service request (see Figure 3).

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 13 of 45

Figure 3: NIMBLE components as Kubernetes (K8s) services

 In a microservices environment, the activity status of different components needs to be checked
to ensure that services are up and ready to respond. As the system grows, more microservices
are deployed with more instances per each microservice, and the probability for a component to
be unresponsive goes up. The Kubernetes based deployment has provisions for the “health
checking” of enclosed microservices, including the ability to restart a failing microservice using
Kubernetes liveness probe. In a Kubernetes installation failed components will be restarted by
the orchestration manager based on the component’s stated restartPolicy. The default policy is
to always restart a failed component. In addition, horizontal scalability can be achieved by
having Kubernetes dynamically adjust the amount of running instances of a microservice based
on the load. Internal orchestration mechanisms will further load balance incoming requests
among different instances of the same microservice.

Communication among applications is performed directly via REST calls. Logging is performed
using the ELK stack2 (ElasticSearch, Logstash, Kibana) or through the cloud’s native logging
tools. A Service Configuration is set up via a combination of Spring Cloud Config3, and a
central Git repository.

Finally, security and access control are the responsibility of the Identity management
component which administrates identities on the platform. Keycloak4 is used as the
authentication server for the OAuth2 and OpenID Connect standards. Within the NIMBLE
platform KeyCloak is mostly used for security and role-based access control. KeyCloak is an
Open Source identity and access management component that can be combined with software
packages to provide a higher level of security guarantees.

Figure 2 provides a high-level view of the NIMBLE deployment scheme. As can be seen in the
figure all microservices are deployed within a Kubernetes cluster running on a public cloud.
Since microservices are stateless by design they use external sources for data management and
communication. Thus, a set of cloud-provided services is used by the different microservices.
The cloud services include several kinds of data management and storage systems (different

2 https://www.elastic.co/webinars/introduction-elk-stack
3 https://cloud.spring.io/spring-cloud-config/spring-cloud-config.html
4 http://www.keycloak.org/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 14 of 45

databases), and a messaging infrastructure. The combination of microservices running in a
Kubernetes environment, using cloud services creates a fully horizontally scalable system.

The NIMBLE platform is composed of multiple microservices and is delivered to users
according to the Software as a Service (SaaS) paradigm. A recent methodology for building
SaaS applications is called twelve-factor5, which defines twelve guidelines for building and
running applications in the cloud. Due to their affinity to cloud environments, they are often
called cloud-native applications. NIMBLE has adopted and was inspired by the twelve factors
paradigm.

1.2 NIMBLE Run-time

The NIMBLE platform consists of a set of core services, which are supported by every
NIMBLE instance, and a set of optional advanced services. Platform core components represent
the main aspects which are required to take a “standard” cloud environment and make it
NIMBLE compliant. They provide the core services which are the heart of a NIMBLE platform
instance. All services are hosted and deployed on the NIMBLE cloud-based run-time.

The NIMBLE platform distributed run-time hosts all entities needed for the complete operation
of the platform, including NIMBLE core and advanced services. In addition, it shall connect all
the platform-supplied middleware services such as the discovery and data related cloud services.

The NIMBLE platform run-time consists of a specially customized PaaS cloud, geared towards
B2B scenarios. Thus, the daily operations are supported by a cloud environment automating
many of the tasks of running such a platform in a scalable and secure manner. This B2B PaaS
coordinates and provides interfaces and hooks to additional system components, such as the
front-end, to complete the cycle of aiding the users with fulfilling their tasks.

In general, NIMBLE follows a strict separation between applications and services. Applications
are stateless microservices, which implement NIMBLE internal business logic. On the other
hand, services are used to store certain state and data in a persistent manner. Therefore,
applications can easily be scaled horizontally without potential data inconsistencies arising.

An internal cloud service bus for communication is integrated within the cloud run-time
environment to provide internal communication and notifications among NIMBLE components.

Applications are deployed within docker containers on a K8s cluster. While several such
containers may be run on the same virtual machines (VM). The VMs in which the applications
run are stateless and are managed by Kubernetes itself. Thus, an application that needs to save
data uses a data storage service such as a database, or NoSQL store. Cloud services are used by
platform instances; access to these services is provided using specific secrets which are
available inside the K8s cluster and are loaded at run-time to the deployed microservices.

1.2.1 NIMBLE Components Deployment

NIMBLE platform deployment starts from a generic cloud infrastructure deployment, including
base services such as security. This deployment is mostly a PaaS which is ready to host generic
cloud service such as storage and can host the NIMBLE platform specific services. Once the
bare cloud infrastructure is in place the necessary services need to be deployed, namely for
storage, communication, etc. Certain services may be deployed directly from the cloud
catalogue of services while other less generic services need to be deployed separately, such as

5 https://12factor.net/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 15 of 45

discovery, and gateway, monitoring. Next, the cloud service bus using cloud provided
messaging services is deployed. At the last stage, the NIMBLE applications are deployed, their
Kubernetes related configuration manages the actual deployment and access information, and in
addition they may register with a service discovery component such that the connection between
different applications can be established.

1.3 Cloud services used by the platform
The NIMBLE cloud-based deployment is divided between the individual stateless microservices
which are deployed on a Kubernetes cluster running in a cloud environment and cloud-based
services which provide generic capabilities which can be used by the individual microservices.
In this section we describe the most significant cloud services used by NIMBLE components.

1.3.1 Data management

The data management component deals mainly with data storage and different flavours of
retrieval. These encompass different databases (relational and NoSQL), as well as file systems.
Moreover, data-based notifications can be supported by connecting between cloud-based
communication and data services.

First and foremost, these services enable ingesting heterogeneous data types into the platform.
Based on the requirements of the entity connecting a data source, data flowing into the platform
can take several routes. The simple one is for incoming data to be stored for potential use in the
future for many purposes, including offline analytics. Offline analytics enables the analysis of
offline data of different types. Furthermore, data can be passed through a real-time pipe for
performing transformations on the data including filtering, potentially targeting notification, and
finally storage of transformed data items.

A list of tables in the main NIMBLE DB can be seen in Figure 4

Figure 4: Tables in the main NIMBLE DB

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 16 of 45

The following microservices make use of a PostgreSQL DB: Identity, business process,
catalogue, data channel, trust, and keycloak. The Track & Trace component makes use of a
MongoDB instance hosted on the cloud.

1.3.2 Communication Bus

The main purpose of this component is to provide generic communication capabilities among
different NIMBLE components and participants. It can be used to send messages and
notifications among components or to share information among various entities. The dominant
paradigm is the publish/ subscribe pattern leading to event-based communication among
collaborating partners by registering interest in particular events. Event-based communication is
often used in microservices based architectures as it decouples producers and consumers in
terms of location and time (asynchronous communication). Using this paradigm producers and
consumers do not have to be aware of each other and need only to agree on the topic via which
they are going to communicate, and the message format of the agreed upon topic. NIMBLE
employs open source tools such as Apache Kafka for the Messaging and Communication
Framework. The message bus is deployed as a service over IBM’s public cloud.

The communication bus will be configured, upon deployment, with the necessary set of topics
as agreed upon between the different components. In addition, the message structure of each
message in each topic will be agreed upon and documented by the cooperating components. The
communication bus needs to support the number of different topics required for a NIMBLE
installation, along with the associated aggregated throughput in all topics.

The communication bus is realized by using an instance of a MessageHub service, deployed in
IBM’s cloud. The back-end is based on a Kafka cluster, and the interaction with the service is
realized using standard Kafka clients.

The following microservices make use of the communication bus: Identity, business process,
catalogue, and trust. Microservices communicate with each other to exchange information
which is pertinent to more than a single microservice, for example when company or trust
related information was changed.

1.4 State-of-the-art System development deployment and
integration

As mentioned above, due to the distributed approach of the design and implementation of the
NIMBLE platform, in which different partners develop independently and maintain ownership
over different components of the system, combined with the complexity of the platform, which
is comprised of many different components, we opted to follow a microservices approach to
make the entire process of design, implementation, and integration more manageable, in a
distributed manner.

1.4.1 Technical infrastructure

After having presented the high-level design for microservices support and guiding principles of
the NIMBLE platform, we turn to deployment and hosting issues, focusing on the provisioning
and operation of the infrastructure, on which the NIMBLE platform relies. This includes the
internal services, business services, associated repositories and external entities.

The platform components are hosted on a Kubernetes cluster managed on, a public cloud, as can
be seen in Figure 5.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 17 of 45

Currently the cluster is composed of two worker nodes, and it may grow based on evolving
system needs. The main characteristics of the worker nodes can be seen in Figure 6. The K8s
cluster is divided into 3 namespaces; the one used for NIMBLE deployment is the “prod”
namespace. The Prod namespace for deployed Applications operates behind Ingress (a reverse
Proxy). This namespace hosts all the platform microservices.

Figure 5: NIMBLE Kubernetes cluster

Figure 6: NIMBLE worker nodes

In addition, there are cloud services which are used by NIMBLE components as can be seen in
Figure 7. As can be seen in the figure there are various instances of relational databases which
are used for example by the catalog related components. There is an instance of a messaging
service which is used by the data channels component. These services are hosted on IBM’s
public cloud and offer binding capabilities to all NIMBLE components.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 18 of 45

Figure 7: NIMBLE cloud services

In Figure 8 we can see some of the deployed microservices, along with a measure of the
resources being used by the running components.

Figure 8: Deployed microservices

1.5 Integration, deployment, and the Continuous Integration
(CI) toolchain

We have created a completely automatic Continuous Integration toolchain, such that changes to
project code, residing in a project-wide GitHub repository (see Figure 9), result in an automatic
build and deployment of a new version of the microservice within the K8s cluster.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 19 of 45

Figure 9: NIMBLE GitHub repository

The Continuous Integration (CI) environment is comprised of the following components

1. GitHub repository: all components should have a repository under the NIMBLE project
(https://github.com/nimble-platform).

2. Docker – a docker image is created for each component.

3. Jenkins: build a new version of a microservice based on code commit and deploys the
new version of the service to the Kubernetes cluster.

4. Kubernetes - managed cluster on which all components are deployed

a. Requires specific Kubernetes configuration for each component

Figure 10: CI workflow

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 20 of 45

The automated workflow kicks in upon a new commit to the master branch in the project
github repository. Jenkins keeps track of such changes via web hooks, and initiates the
procedure as specified in the JenkinsFile. The standard procedure is to build the component
using the dockerFile, and if no errors reported, to deploy the docker image on a docker
container running in the Kubernetes cluster, using the specified kubernetes configuration.
This process happens for every repository for which there exists an associated JenkinsFile.

A more elaborated pictorial view of the CI workflow can be seen in Figure 11.

Figure 11: CI detailed

2 NIMBLE Federation

A NIMBLE instance provides a set of core services that enable end-users to engage in business
collaborations. These services include, for example, the ability to publish and search product
catalogues, to conduct negotiations, manage supply chains, and execute business processes. A
NIMBLE provider can take the open source infrastructure and bundle it with sectorial, regional
or functional added value services and launch a new platform instance. Such specializations
may take place at the industry level, namely adding specific capabilities for a specific industry,
or at a regional level for addressing specific requirements of a specific country or geographical
region.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 21 of 45

Figure 12: A set of specialized NIMBLE instances, federated for collaboration

The vision is to enable a federation of NIMBLE instances, such that end users belonging to
different NIMBLE instances may engage in B2B operations.

The federated platform concept enables the specialization of a fixed set of capabilities for
requirements stemming from different sectors or regions. NIMBLE aspires to a federated yet
interoperable eco-system of platforms that provide B2B connectivity. Such a common, yet
federated infrastructure opens the door for multiple platform providers, with a diverse set of
platform instances that still can collaborate.

2.1 Federation Requirements

In addition to the major requirements from every NIMBLE instance, federation presents several
additional requirements.

 The ability to discover and find additional NIMBLE instances to collaborate with.

 The ability to invoke the core services provided by one NIMBLE instance by end-users
of another NIMBLE instance, for example to search for a specific product across
various NIMBLE instances.

 The ability of each end user to select whether a service, catalogue, or product is exposed
outside the scope of its local NIMBLE instance

 The ability of an end-user to decide whether an action on his behalf would be local or
federated. For example, conduct a search operation only on the local instance or in all
instances available via the federation.

 The ability of the administrator or governing body of a NIMBLE instance to decide
with which other instances to federate.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 22 of 45

2.2 Architecture High Level View

The main elements of the federation architecture are the Federation Core Service and the
federation Delegate. The Federation Core Services” are placed outside of all participating
NIMBLE instances and contain general management support for the federation. The Federation
Delegate is placed at the edge of each NIMBLE instance representing that instance in the
federation.

Figure 13: Federation high level view

The Federation Delegate is an entity identified, registered and deployed within the instance it
belongs to. It is also identified and registered in the Federation Core Services. It controls the
communication and collaboration patterns between local entities (users and services) and
external instances. The delegate obtains information from the federation core services
concerning its counterparts in other NIMBLE instances and proceeds to invoke the respective
operations directly on the delegate belonging to the nimble instance it wishes to collaborate
with.

The federation core services allow the delegates of different instances to discover and find each
other and engage in secure communication and safe transactions. The federation core services
use as building blocks components that exist in a NIMBLE instance; for example, the identity
service and elements of the security mechanisms are reused, and therefore allow the delegates to
perform role-based access control on other delegates seeking to invoke local services.

The delegate of one NIMBLE instance communicates with the delegate of a second NIMBLE
instance, not directly with the local services of the second instance. The interaction is performed
using a RESTful API. An end user or local service will contact its local delegate, which will
contact the remote delegate of a remote NIMBLE instance, and that delegate will forward the
request to its local services. Responses will be sent back, following the reverse path, to the
imitating entity. Responses will be combined by the local delegate that initiated the call, and
aggregated results shall be passed to the front-end to be presented to the end-user.

Delegate-2

Delegate-1 Delegate-3

NIMBLE-1

NIMBLE-2

NIMBLE-3

Federation core services

Identity Discovery

Sa Sa

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 23 of 45

Security and privacy are the main reasons that we choose to place a delegate at the edge of each
NIMBLE instance and allow it to communicate only with the respective delegate of a remote
NIMBLE instance. This way, an internal service or entity only communicates with a local
trusted component. Each instance administrator can easily configure and enforce what
information stays within the instance and what is permitted to be exposed to the federation. We
envision the delegate as a configurable gatekeeper that is used to protect the data of an instance,
in addition to its role of connecting it to the federation. The requests flowing in the route
service->delegate->delegate->service carry the bulk of the data that flows between instances,
and therefore constitute the federation “data-plane”. It consists mainly of API calls forwarded
back and forth between instances.

The federation core services facilitate the connectivity realized by the delegates and controls
what roles are granted and which access patterns are allowed. The interaction between the
federation core services and the delegates can therefore be called the federation “control-plane”.

This architecture is analogous to the architecture of ISTIO6, an open platform to connect,
manage, and secure microservices. Istio has an entity called “Envoy” which is analogous to our
delegate, that realizes the data-plane between services and mediates the traffic between services.
Istio also has a control-plane, which controls the connectivity patterns of the Envoy, much like
the federation core services control the delegates. This architectural pattern is also pervasive in
Software-Defined-* (e.g. software defined networks (SDN)).

2.3 Federation Components

The federation components represent the main aspects which are required to take a “standard”
NIMBLE instance and allow it to federate with other NIMBLE instances. The first aspect is
deploying the federation core services. The second aspect is deploying a delegate in every
NIMBLE instance. The delegates are then registered to the federation core, and an administrator
configures the roles of each delegate. Some extensions to the capabilities of local services are
recommended, for example tagging each item, service or capability with a “scope” of whether
externalizing it in a federation is permitted.

There are manual steps which are required before a federation is created. These are not technical
steps but rather managerial and organizational steps. First, there needs to be an entity which is
interested in establishing a federation of NIMBLE instances. That entity shall become the
manager and administrator of the federation. Second, there need to be NIMBLE instances which
are interested in joining the federation. Once the different entities are in place they can create a
consortium which shall collaborate within a federation. The rules governing the federation
consortium are out of scope of the current work and are left for the different entities who wish to
collaborate to decide. A technical requirement for NIMBLE instances to join a federation is to
support the APIs of the NIMBLE core services. Once the agreement is in place the federation
manager can spin up the federation core services and provide the required configuration to the
individual NIMBLE instances wishing to join. The individual NIMBLE instance will in turn
register itself with the federation and the collaboration can begin. This process is somewhat
analogous to a new company that wished to join a NIMBLE instance.

6 ISTIO, An open platform to connect, manage, and secure microservices. https://istio.io/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 24 of 45

2.3.1 The delegate

The delegate is a state-less component that hides the internals of a local NIMBLE instance from
remote incoming traffic and mediates and routes the outgoing traffic on behalf of local entities.
It has an identity (at least one, see below) in the local instance.

Local entities will be able to find the delegate using the platforms service discovery component
and direct a request to it, for example a search request for discovering a certain class of
products. The delegate will check the role of the entity doing the request and forward that
request to a remote delegate (or delegates), while assuming the role of the requestor (role
definitions should overlap in federated instances). The remote delegate will forward the request
to the respective search service in its local instance, provided that the role of the requestor
permits that. Responses will be sent back in the reverse path.

The API of the delegate will be a subset of the APIs of internal core services. We envision a
configurable delegate, in which the instance administrator can choose which subset of API calls
are supported by a delegate.

The communication between delegates – the data plane – will carry the bulk of cross NIMBLE
traffic. Since the delegate is stateless, it is possible to run several delegate processes in parallel
in order to address scalability concerns. As delegates are deployed within a NIMBLE instance
as an additional microservice they can benefit from automatic scaling capabilities of cluster
orchestrators such as Kubernetes.

2.3.2 Federation core services

The federation core services are a collection of entities that together allow NIMBLE instances to
federate and end-users to collaborate. The federation core services are deployed in the same
style as a NIMBLE instance – as a cloud ready collection of services within a Kubernetes
cluster. Once deployed, these services will provide a set of APIs that allow the federation core
to provide the following capabilities:

 Allow NIMBLE instance administrators to register their platform instance for
federation.

 Allow NIMBLE instance administrators to define identities for delegates to their
respective platforms.

 Allow a delegate to register and identify itself as a representative of an instance.

 Allow delegates to search for other instances and discover the delegates that represent
them.

 Provide security mechanisms that allow delegates to securely communicate.

 Provide security mechanisms that allow delegates to exert role-base access control on
(1) the type of operations they are willing to accept from internal entities and forward to
remote instances, and (2) the type of operations they are willing to accept from remote
instances and forward to internal entities.

As much as possible, the federation core services will be implemented using building blocks
that are already in use in a NIMBLE instance. For example, we expect the Identity Service to
play in the federation core a similar role as in a NIMBLE instance.

The identity service

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 25 of 45

The identity service is used to establish an identity for a NIMBLE instance and an identity (or
identities) to the delegates that belong to that platform. This is analogous the way identity
management within an instance establishes an identity for a company and users that belong to
that company.

The discovery service

The discovery service allows delegates to discover other live delegates. A delegate connects to
the discovery service and publishes its identity, affiliation, and address. As long as it remains
connected it will be kept as “alive” in the discovery service. Other delegates can query the
service for all live delegates. In a sense this is a membership service for delegates.

2.3.3 Extensions to local services

Services that reside within a NIMBLE instance need some minor extensions to be federation
ready. At a minimum, they need to include in their description and role-based security profile
whether they are permitted to engage in federation-wide activities.

2.4 Representative Flows

2.4.1 Deploy

A federation manager (administrator) deploys the federation core services: identity and
discovery. It then provides the address of the federation core services API to NIMBLE instance
administrators. Services are deployed in the same style as NIMBLE core services – cloud ready
decoupled state entities.

2.4.2 Enrolment and Registration

As can be seen in Figure 14, a NIMBLE instance manager submits an enrolment request to the
federation core, and the request is evaluated by the federation governing body or automatically.
If approved the joining instance administrator generates an identity for the delegate that
represents the instance. The administrator then deploys the delegate, providing it with the
address of the federation core API, and proper credentials. The delegate connects to the
discovery service, registers itself, and from that moment on it is discoverable as a delegate of
the respective instance. Conversely, it can discover the delegates of other NIMBLE instances
within the federation.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 26 of 45

Figure 14: Join a federation

2.4.3 Search

A user within a NIMBLE instance wants to search outside its instance for a certain type of
service. The user ticks the “federation” box within the search component provided by the
NIMBLE front-end. The front-end will discover the local delegate using the local discovery
service and will direct the search call to the local delegate. The local delegate shall turn to the
local search component and invoke the corresponding query on it. In parallel, the delegate shall
query the federation code services to obtain a list of all available delegates of other NIMBLE
instances in the federation. Note that such a list may be cached by the local instance with
periodic refreshes from the federation core services. Each delegate receiving the search request
shall invoke the query on its local search component and shall send back the results to the
initiating delegate. The delegate at the initiating instance shall combine all the results received,
locally or remotely, shall add an identified as to the originating instance and send back the
combined set of results to the local front-end.

2.4.4 Catalogue Service

Search results retrieve the basic information concerning the relevant product or services. The
user can drill down to obtain more information on specific products or services, by clicking on
the item of interest in the front-end. For local products the front-end turns to the catalogue
service which returns the desired information. For remote products, namely products that were
brought in from another NIMBLE instance there is a need to query the remote catalogue service.
To realize this capability the federation aspects come into play. The call which in the local case
targets the local catalogue service, turns instead to the local delegate. The delegate, using the
mechanisms described above of the core federation services, locates and contacts the remote
delegate service on the corresponding NIMBLE instance. The remote delegate invokes the call

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 27 of 45

on its local catalogue service and the response is sent back to the originating delegate. The
originating delegate in turn sends the responses back to the local front-end to be presented to the
interested end-user.

2.4.5 Business process

To achieve cross NIMBLE instances business processes, we require synchronization of the
relevant state across the participating instances. There are two main options for keeping the
remote instance synchronized with relevant business processes, namely using a single business
process engine, or synchronizing engines on both instances (Camunda is used as the business
processes engine). We opt for supporting federated business process using a single engine, at the
seller’s platform.

Federated business process using a single engine

Parties from two instances that wish to execute a shared business process shall do so utilizing a
single underlying business process engine. The engine of the seller instance shall be used, and
the counterpart will interact with the business process engine remotely via the delegate service.
Within a single NIMBLE instance at each step of the business process there is a party which
should send a message, and the other party which is waiting to get a message. Sending messages
is done via the Camunda API, while the receiver side polls the Camunda engine to obtain new
messages targeted to it. The federated case will be handled in a similar manner, having the seller
side operate regularly (locally), while the buyer side will do it remotely using the previously
described delegates mechanism.

After initiating the process in a particular business process engine, triggering events on it
follows the same path as search requests: end-users local to the business process call it directly,
whereas remote end-users call their delegate, which forwards their calls to the delegate local to
the business process, which in turn invokes the business process.

Thus, the entity in the instance which is using a local Camunda engine will invoke the API
directly, while the remote instance will invoke the API remotely using the delegate processes on
both instances. Entities polling for information will have to poll all instances in the federation to
discover the updated information concerning their active business processes across all NIMBLE
instances in the federation. The NIMBLE dashboard for business processes is populated in that
manner. Thus, when taking another step in a business process and sending a corresponding
message, the identity of the remote counterpart NIMBLE instance is known, such that the
remote call can be targeted towards one specific instance delegate. When populating the
dashboard with the updated state of all business processes, that call shall be distributed to all
members of the federation, using the delegate service, to obtain complete and updated
information.

Federated business process using local engines

This option explored the possibility for each instance to operate just like in the single instance
case by using its own local Camunda engine. For that to work we need to keep the Camunda
engines of both NIMBLE instances in sync. To achieve that we would require an API call
invoked on the local Camunda instance to be invoked also on the Camunda engine of the second
instance by utilizing the delegates.

This option was evaluated as well but was discarded in favour of the solution described above.
The main rationale behind this choice is that keeping both instances of a business process
engine in synchronization, taking into consideration corner cases (such as one of them being
down for a while) is a complicated task. Using the solution above reuses a lot of the work that
has been done already to support federated search and catalogue service.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 28 of 45

Invoking APIs will always be local. Once the call has been invoked, a similar one shall be
invoked on the local delegate, which in turn will invoke it on the remote delegate, which in turn
shall invoke it on the remote Camunda engine. Polling for retrieving the current state of
business processes for an entity shall always be a local call invoked on the local Camunda
engine.

2.5 Access control

The federation architecture was designed with security and flexibility in mind. We therefore
choose to place a delegate at the edge of each NIMBLE instance and allow it to communicate
with the respective delegate of a remote NIMBLE instance. This way, an internal service or
entity only communicates with a local trusted component, and all security filters are enforced in
one place. The control plane that is headed by the federation core services augments the
delegates with central control of all security measures and activity patterns.

The controller and control plane architecture provide flexibility as well. Role based access
control together with selective publication of capabilities imply that a NIMBLE instance
administrator has complete control on what is exposed to the federation.

3 Blockchain in NIMBLE

3.1 Blockchain essentials

A blockchain revolves around the concept of a shared ledger, representing the system of record
and a single source of truth for business interactions. The shared ledger, at the heart of the
system, is maintained by a cluster of peer processes, belonging to different organizations,
providing an append only transactions log, while guaranteeing the immutability of inserted and
validated transactions. The blockchain enables a network of business partners to perform
transactions across organizations without resorting to a single unified trusted authority. A
blockchain transaction represents a state change or asset transfer in the ledger; transactions are
governed by smart contracts, which contain the rules for transactions to be invoked and the
agreed upon resulting behaviour. Blockchain provides a shared, replicated, permissioned ledger
ensuring trust, provenance, immutability and finality, to replace inefficient, expensive, and
vulnerable processes.

These measures together provide a level of trust among partners which is difficult to achieve
otherwise in an inherently trust-less and distributed environment. Most importantly, the trust is
not due to a single actor within the network, but rather it is an outcome of the collective nature
and properties of the underlying technology. Transactions through the platform are recorded in a
final and immutable manner by the blockchain, providing all network members with an identical
and trustworthy real-time view of the state. Validated transactions in a block in a ledger cannot
be modified or deleted without leaving a noticeable trail.

As can be seen in Figure 15 the shared ledger provides a real-time common and replicated view
of the state of the transactions among all members of a blockchain network. This reality stands
in contrast to the pre-blockchain era in which each organization held its own ledger, opening the
door to inconsistencies and disputes.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 29 of 45

Figure 15: Blockchain’s core - the shared ledger

The four cornerstones comprising the blockchain structure are a shared ledger, transaction
verification by network members, smart contracts, and security & privacy measures. All these
building blocks combined provide assurance for consensus, provenance, immutability, and
finality. These capabilities lay the foundation for a blockchain platform for enterprises as can be
seen in Figure 16.

At a high level, the system is comprised of peers belonging to different organizations, which
replicate and validate the blocks comprising the ledger; an ordering service which determines
the order of the transactions and publishes the corresponding blocks; and a client that interacts
with the system for invoking transactions or queries. A sub-set of the peers is involved also in
endorsing transactions submitted to the system; supporting consensus for inserted transactions.
All entities hold verifiable security certificates issued by a Certification Authority.

Blockchain technology usage is relatively new but interest in it is growing in many fields. The
first such field is the financial services arena, but more areas are exploring the usage of this
technology, supply chain being in the forefront. In various analysis reports it can be seen that
Banking / Financial Services and Supply Chain remain top industries for blockchain activity7. A
lot of attention and funds are being devoted to exploring blockchain contribution to supply chain
scenarios8, both by industrial partners, as well as large IT providers, such as IBM, Oracle, and
Microsoft.

7 https://www2.deloitte.com/content/dam/Deloitte/cz/Documents/financial-services/cz-2018-
deloitte-global-blockchain-survey.pdf
8 https://www.tradelens.com/
https://www.coindesk.com/pwc-australia-port-of-brisbane-unveil-blockchain-supply-chain-pilot
https://www.zdnet.com/article/alibaba-pilots-blockchain-supply-chain-initiative-down-under/
https://www.forbes.com/sites/bernardmarr/2018/03/23/how-blockchain-will-transform-the-
supply-chain-and-logistics-industry/#748fab1e5fec

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 30 of 45

Figure 16: Blockchain essentials

3.2 Blockchain for supply chain

Blockchain solutions are prominent in business relationships which require data to be shared
between different entities. Such data may be needed in real-time or close to it, or as a trace of
past transactions to be used in the future. Companies involved do not, however, necessarily have
trust in each other. Such relationships are prevalent in supply chain networks. The use of a
blockchain based infrastructure enables parties which are a part of a supply chain relationship to
leverage the technology to gain tangible benefits in important areas such as reduction in time,
money, and risk. The blockchain serves as the single source of truth, which is shared among all
participants, and is not controlled by a single entity.

Figure 17: Technology Layers

In Figure 17, a high-level view of the technology layers involved is depicted. At the bottom
resides the blockchain infrastructure itself, which consists for example of consensus mechanism,
cryptographic validation, mechanisms for replication of blocks, and certificate authorities (CA).
In our current implementation and deployment all these components are hosted and deployed on
the IBM cloud (based on Hyperledger Fabric9). At the middle layer reside the elements which

9 https://www.hyperledger.org/projects/fabric

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 31 of 45

enable developers to insert specific logic which shall be tightly coupled to a specific deployment
of a blockchain. This layer encompasses the specific rules governing the interactions supported
for a specific network of participants. This layer is mostly associated with and implemented by
Smart Contracts (called chaincodes in Hyperledger fabric). Chaincodes interact with ledger state
implementing business logic of network members. At a higher layer resides the solution or
application, which serves as a mean to connect the blockchain with the business processes of
companies, be it via interaction with end-users, or digital processes and devices operating on
their behalf.

As a part of the vision to incorporate a blockchain based supply chain platform, the first step is
to incorporate partners data of all sorts, be it machine generated data or a part of a business
process involving a human in the loop. The data serves as the driving element to the agreed
upon logic which resides in the blockchain level as well in the form of smart contracts.
Examples as to the kind of data includes data coming from IoT devices which enables tracing
the location and state of items in real-time to drive potential notification on out-of-bounds
conditions affecting agreements.

Such capabilities enable a coherent and updated view of the status of the supply chain
ecosystem including current stage of an item in the production floor and the associated state as
can be reported by attached IoT devices; all according to the scope, rules, and conditions agreed
upon among the network partners.

The blockchain infrastructure can be used to reduce the rate of disputes and errors in logistics
and to enable real-time tracking of transactions in the supply chain providing elevated accuracy,
security and speed; while ensuring that data and interactions are not made visible to
unauthorized partners. Moreover, full traceability and provenance of business processes
execution is supported by the blockchain infrastructure.

3.2.1 Advantage of Blockchain based scenarios in the area of
supply chain

In general, several benefits can be obtained by applying blockchain based scenarios in the area
of supply chain.

 Enhance trust in a trustless environment – providing end-to-end provenance. Blockchain
based supply chain relationships can become a validated, trusted, self-executing
process, supporting non-repudiation.

 Tie in fragmented and siloed systems - A shared ledger can remedy this situation by
providing a unified view to all participants at the same time, which can be accessed
using the same interfaces to the same underlying system. This provides a clear picture
for making decisions to all involved entities.

 Minimize disputes – Having a single source of truth, verifiable and auditable, can lead
to a reduced number of disputes, and a shorter time to resolution of existing disputes.

 Data integration, including IoT, can lead to greater transparency and better, more
efficient, collaboration by taking actions programmatically and automatically based on
incoming data. Provide the capability to track, monitor, and report the location and
status, of shipments, goods, or supplies with the integration of IoT devices. Provenance
of each component part in a complex system is hard to track but is of great value,
especially as items can be combined or be contained. Such information may include the
manufacturer, production date, batch and even the manufacturing machine program.
Moreover, producers and end users require transparency on where and how their raw
materials and sub-contracted products and supplies are made. Some governments

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 32 of 45

require more information about corporate supply chains, with penalties for non-
compliance. In such a case blockchain enables the safe digital transfer of material and
goods end to end, across the supply chain. That information includes which party had
ownership to what part at what time, and what changes were performed.

 Automating contracts and processes - Terms of a contractual agreement between parties
can be manifested as a smart contract running in the blockchain. For example, a buyer
wants an efficient way of converting a purchase order into validated, self-executing
contract updated to reflect the status of the supply.

 Differential visibility and data privacy ensure that the information is shared only among
the intended partners.

3.3 Blockchain use in NIMBLE

3.3.1 Blockchain roles in the overall platform architecture

The blockchain platform is developed and deployed as an added value service to the NIMBLE
platform. It consists of the blockchain network itself and the NIMBLE based applications which
interact with it. The blockchain component exposes interfaces to services that the different
higher-level components of the platform can use. For example, the Tracking and Tracing
component uses specific REST calls which are exposed via the blockchain component. Thus,
different platform components use interfaces exposed by the blockchain component in order to
take advantage of the capabilities and promises of a shared ledger. The blockchain component
exposes a REST interface to other platform components. The interfaces are grouped according
to functionality provided, namely T&T and Preferential Certificate of Origin related interfaces.
There are two main kinds of actions supported by the interfaces:

1. Invoke smart contract transactions – intended for NIMBLE modules to be able to
invoke transactions residing in smart contracts. These transactions are invoked to
change the state of an entity and record that for posterity. For example, in the T&T
scenario it can represent an item passing to a new stage in the production floor.

2. Query - expose query capabilities to retrieve data stored in the blockchain. For example,
the in the Preferential certificate of origin case, the hash of associated with a specific
order can be retrieved.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 33 of 45

Figure 18: Embodiment within NIMBLE

As can be seen in Figure 18, the blockchain support architecture for the different NIMBLE
services consists of several components. First, the blockchain network itself which currently
involves a single channel per service supported. That channel hosts the chaincode which drives
the interaction with the component itself. The network is further comprised of peers that obtain
and validate blocks of transactions and hold a replica of the shared distributed ledger. In
addition, there is a chaincode implementing the blockchain smart contract, storing and updating
the state of entities and allowing querying the ledger and the associated world state for
information on those entities. The chaincodes supporting the NIMBLE components are written
in the Golang10 programming language. In addition, there exists a NodeJS client embedding
internally a Hyperledger Fabric NodeJS client to invoke/query the appropriate chaincodes. The
NIMBLE components interacting with the blockchain invoke the blockchain client exposed
methods via a set of exposed RESTful APIs, passing JSON objects whose structure is agreed
upon between the components, to invoke transactions that change internal state or query for
stored information. An ordering service is associated with a channel (several channels can share
an ordering service) with the mission to create a total order of incoming transactions, cut blocks,
and make the blocks available to the designated peers.

Mediating between the blockchain infrastructure, including the smart contracts layer and the rest
of the components of NIMBLE is an application listening for incoming requests and
communicating on the other side with the blockchain infrastructure. The application exposes a
REST interface to the rest of the NIMBLE platform, and acts as gateway between NIMBLE on
the one hand and the blockchain infrastructure on the other hand. The application communicates
as well with a certificate authority (CA) in order to resolve the cryptographic material and
identification of entities. The application embeds an internal blockchain client which in turn can
invoke transactions and queries on the blockchain itself.

10 https://golang.org/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 34 of 45

3.3.2 Capabilities supported in the NIMBLE platform

This section is intended to introduce the specific use cases and tools that will make use of the
blockchain technology within the NIMBLE project. As aforementioned, the Blockchain
integration currently focuses on two representative scenarios, namely track and trace, and
preferential certificate of origin. The NIMBLE platform shall take advantage of a blockchain
based infrastructure as the provider of a trusted (in a trust-less environment) single source of
truth.

The functionalities that a blockchain infrastructure can support in supply chain scenarios will be
translated into plans for specific use cases to be deployed in the NIMBLE platform. Hereinafter,
a short description of each supported capability is provided.

Tracking and tracing
Product identification codes turn products into unique, identifiable items. This is the basis for
tracking and tracing. Tracking means to identify the current state of an item. Tracing provides
the user with a history of the events that changed the item’s state.

T&T receives and processes tracking events. An event has a place, time and meaning. Event
data originate from one or more measurement devices that read product identification codes via
Radio Frequency Identification (RFID) technology. NIMBLE applies the Electronic Product
Code Information System (EPCIS) standard to systematize and name the tracking events. It
supports interoperability with existing tracking and tracing infrastructures of the platform users.

Tracking and tracing is a value-added service that demonstrates the interaction between
NIMBLE and a blockchain. In the specific scenario, the progress of a produced item in the shop
floor shall be tracked, via RFID gates. In addition, relevant condition parameters during the
production shall be tracked and stored in the blockchain using information originating in IoT
sensors.

Figure 19 shows the interfaces which are supported by the blockchain application for the
tracking and tracing scenario. There are interfaces available for adding information to the
blockchain via transactions invocation and interfaces for querying the blockchain for specific
information. The corresponding swagger can be accessed in the following link:
http://161.156.70.125:5000/api/.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 35 of 45

Figure 19: T&T support interfaces and data models

Figure 20 depicts the interface for adding an RFID event. This call is invoked by the T&T
component when an item passes through a gate in the production floor of the factory. The
information provided may include more than a single entry (see the epcList part in the figure).
For each such entry there’s an associated hash (shortHashForEPCList), and there’s a combined
hash covering all the individual entries (completeHash).

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 36 of 45

Figure 20: RFID event addition

Figure 21 depicts the addition of a hash corresponding to a batch of sensors reading. The
sensors reading represents environmental conditions in the factory while the item was being
produced. The actual values are stored elsewhere, in a Track & Trace data store, but upon
retrieval of the individual sensors information we can retrieve the corresponding hash to ensure
that the data retrieved is genuine and has not been tampered with. The readings are batched into
groups and stored as such; the hash value corresponding to the batch is stored on the blockchain
to ensure that data has not been tampered with.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 37 of 45

Figure 21: batch of sensors addition

Figure 22 depicts a query to retrieve hash values previously stored on eth blockchain. The query
interface expects to receive as a parameter a list of hash values to be verified. Each hash string
is comma separated, the first value being the corresponding event type and the second value is
the hash code. This call is used at the data validation phase of the track and trace component.
This phase takes place before the corresponding data leaves the system, for example to be
displayed on a dashboard. Hash vales corresponding to different types of events can eb
validated in one such call. The response includes validation status for each entry and as
convenience value indicating whether all requested entries were validated.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 38 of 45

Figure 22: query for hash values

Figure 23 depicts a query to obtain historical information of a specific item that has been
tracked. The response includes all the RFID events that were associated with this entry. In
essence the full path the item has passed through the factory can be retrieved using this call.

Figure 23: Query EPC history from the blockchain

Preferential Certificate of Origin

The Preferential Certificate of Origin is a statement of a producing company regarding the
production of goods. The possibility of emitting a Preferential Certificate of Origin depends on
factors stated in the commercial agreement between the European Commission and the country
that is importing the goods. This type of certificate allows companies to reduce or avoid paying
duties costs. Normally the major request is that one or more substantial transformations to the

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 39 of 45

produced good are made in a European Country. This type of certificate can be issued directly
by the producer but, at least in Italy, a specific authorization by the Custom Authority must
exist. The invoice is used by the customs to calculate duties and shall contains information
about the Preferential Origin of the goods.

The EU has made different commercial agreements with other countries to facilitate the
exchange of goods along the customs in order to improve the exportation of typical European
products. These agreements, mainly, specify those products and production constraints that
determine a (possible) reduction of importation duties and, thus, the final cost for the local
buyer. These agreements state also the obligations of the sellers in terms of documentation
required and custody of those documents. Controls are requested from remote customs and
performed by local custom office on the company's premises.

The blockchain is being used to keep a record of the invoice which includes the preferential
certificate of origin, including hash of the document(s) and a timestamp, such that the customs
can verify that relevant documents have not been tampered with.

Figure 24Figure 19 shows the interfaces which are supported by the blockchain application for
the preferential certificate of origin scenario. There are interfaces available for adding
information to the blockchain via transactions invocation and interfaces for querying the
blockchain for specific information. The swagger specification can be accessed via:
http://161.156.70.125:7695/api/.

Figure 24: Certificate of origin interfaces

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 40 of 45

Figure 25 depicts the interface for adding a new invoice information to the blockchain.
Information provided is the invoice ID, the corresponding hash code and an optional link to the
actual document. The returned information includes the timestamp in which the information was
incorporated to the blockchain.

Figure 25: adding a new invoice information

Figure 26 depicts the interface for retrieving invoices entered by a specific ID.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 41 of 45

Figure 26: restore invoices added by a specific ID

Figure 27 depicts the interface for retrieving information of a specific invoice.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 42 of 45

Figure 27: retrieve specific invoice information

3.4 Supporting blockchain platform architecture

Permissioned networks require the registration of entities which can participate only after being
accepted. Thus, the membership of a network is known, and each action is taken on behalf of a
specific entity using issued certificates. Underlying a Hyperledger Fabric network, as most
permissioned networks, is the notion of a consortium, which is a group of organizations that
agreed to set up a blockchain network between them, establishing the governance body and
rules. As can be seen in Figure 28, most central organizations within a blockchain network will
deploy (or use) a Certificate Authority (CA) on their behalf, and will contribute peer(s), which
are components that endorse, validate, and hold replicas of the shared ledger. In addition, an
ordering service needs to be set up by the organisations, to order the transactions, cut blocks and
make them available to the peers.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 43 of 45

Figure 28: Blockchain network components

Transactions among members is performed in the context of a channel. A channel creates a
separate ledger visible only to the organizations included in the channel.

To become a network member first each participant needs to be registered and enrolled in the
network via a Certificate Authority. A user with an appropriate role (such as admin) can register
additional users from his organization. Using a secret received during the registration process
the new user can enroll, thus receiving the required credentials for participating in the
blockchain network. Using these credentials, a user may start invoking transaction on the
blockchain.

To bootstrap a network, we need to have an ordering service up, create peer processes on behalf
of organizations, create channels, and distribute the appropriate cryptographic material,
including the certificates required to participate in the network, to each entity. Once the
backbone is in place we can install and instantiate chaincodes. We need to install a chaincode on
each peer which may endorse transactions for that channel (endorsing peers are the only ones
that actually execute the chaincode). The chaincode needs to be instantiated on one of the peers,
to create the bond between the chaincode and the channel and run the initialization method
specific to that chaincode.

Once the chaincode is in place users can start invoking transactions and queries on the
blockchain channel. By using a client, the user assembles a transaction and sends it to the
endorsing peers. In the NIMBLE case the application receiving REST requests from NIMBLE
components performs this operation. Endorsing peers’ policy is determined per chaincode and
establishes the identity of potential endorsers and the conditions that have to be satisfied for a
transaction to be approved. Once the client has received responses from the endorsing peers, he
can evaluate whether the transaction abides by the endorsement policy and can thus go through
or needs to be dropped. Endorsing peers are the only ones that actually run the chaincode (in a

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 44 of 45

simulating mode) and return the corresponding read and write sets of the transaction, namely the
keys and versions of variables that were read or written by the simulated execution of the
chaincode. Endorsed tractions are then sent, along with the corresponding read and write set to
the ordering service. The ordering service in turn orders incoming transactions, cuts blocks, and
makes the blocks available to the peers. Peers in turn obtain a new block, validate the
transactions in it, and apply the write set for the transactions that have been determined to be
valid.

In Figure 28 we can see the components described above in play. On the right-hand side, we can
see the main components of the blockchain network itself namely the ordering service, peers,
and the certificate authorities. We can further see the channels which are declared in the system
associated with an ordering service and a sub-set of the peers. In the middle we can see an
application which embeds a Fabric client to communicate with the blockchain while exposing a
REST interface for other NIMBLE components.

The blockchain system mostly consists of three layers. First, a physical layer of deployment
which includes the establishment of the network consisting of organizations, their participating
servers (peers in Fabric), channels, cryptographic material, and more. A second layer includes
the establishment and distribution of smart contracts (chaincode), which programmatically
determine the rules and actions to be followed. These smart contracts control the state that is
saved in the underlying blockchain DB. On top of these lie the business layer which connects
between the external world and the underlying blockchain infrastructure. In our deployment, as
in most cases, this layer consists of the programmatic core of the interactions to follow, which
exposes, on the one hand, to the higher layers of external applications a RESTful interface
through which the interactions with the blockchain are mediated. On the other side it includes a
Blockchain client (such as the Fabric NodeSDK client), which is in charge of interacting
directly with the blockchain by invoking transactions, invoking queries, and establishing call-
backs. These call-backs enable an asynchronous mode of operation in which a process is
notified by the blockchain network on the occurrence of events which were declared as being of
interest to the application or higher layers.

Once a generic blockchain based platform infrastructure (Figure 28) has been put in place, it’s
possible to develop specific blockchain constructs on top of the infrastructure to provide
capabilities which are specific to the NIMBLE platform hosting the blockchain network.

4 Summary

The starting point for this document is the basic NIMBLE platform developed in WP3,
including the core services that each such platform instance needs to support. In this document
we elaborate on extensions and advanced services which can be run on top of a NIMBLE
instance to provide a flexible set of specific capabilities. In particular, we first described the
NIMBLE hosting and deployment structure, followed by the manner in which a federation of
several NIMBLE instances can operate. Finally, we describe the blockchain as a technology for
supply chain scenarios and contextualize it with NIMBLE added value services.

Lessons learned: The early architectural choice for taking a microservices approach has proven
to be helpful. Individual component were able to advance faster as they were independent, while
maintaining the agreed upon external interfaces. A complementary choice was to use
established middleware technologies for collaboration patterns among microservices, such that
they don’t even have to know about each other, including deployment location and interfaces.
For example, a message bus was used to exchange information among microservices without

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D5.1 Advanced Platform Infrastructure Page 45 of 45

directly calling each other. In parallel databases were used which enabled accessing to data, for
example after having been notified by the message bus of the existence of such data.

The use of Docker, an open source containerization technology, proved useful as well as it
brought in flexibility to deploy services on multiple kinds of hosts, from local to cloud, using
advances technologies such as docker-compose and Kubernetes.

The use of a complete CI/CD using an open source toolchain involving GitHub, Jenkins and
Kubernetes proved effective as well.

A challenge was to maintain a single source code for several different kinds of deployment,
attempting to manifest all the differences via run-time configuration parameters. The process
works reasonably well but could be improved in the future. Similarly, the deployment of a new
instance works reasonably well, but could be made more efficient in the future as well.

