

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 1 of 56

Collaborative Network for Industry,

Manufacturing, Business and
Logistics in Europe

D3.8
Tool for Collaboration Setup and Interoperability Testing

Project Acronym NIMBLE

Project Title Collaboration Network for Industry, Manufacturing, Business
and Logistics in Europe

Project Number 723810

Work Package WP3 Core Business Services for the NIMBLE Platform

Lead Beneficiary ENEA

Editor Gianluca D’Agosta, Nicola Gessa,
Piero De Sabbata

ENEA

Reviewers Benjamin Mandler, Yildiray Kabak

Contributors

Dissemination Level PU

Contractual Delivery Date

Actual Delivery Date 31/12/2018

Version V2.0

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 2 of 56

Abstract

This document explains how NIMBLE can support firms in adopting open XML standards for
business information exchange by offering a digital business document test service.

Since the '70s, the exchange of business information using reliable standard solutions, such as
EDI, has been one of the most relevant elements for creating complex networks of enterprises
interacting along the same supply chain. Unfortunately it was a heavy mechanism that very few
supply chains were able to adopt, for example the automotive industry.
Since the end of the last century, the evolution of other simpler languages, such as the eXtended
Markup Language (XML), has boosted the flowering of new applicative standards supporting
several aspects of business processes such as OASIS UBL and CEN eBIZ/Moda-ML.
However, the adoption of such standards still requires effort and the assumption of costs that
become a barrier for many small firms. It is experienced that the initial collaboration setup and
debugging phases are the most risky and costly for companies.

Large firms, but not only, are increasingly asking for business documents to be automatically
managed in system-to-system scenarios.
Because the exchange of business documents based on standards is one of the ways to support
customised processes, this problem will affect also the NIMBLE platform, in which large and
small companies coexist and collaborate.
The Test Bed Platform (TeBES), described in the following chapters, aims at contributing to make
NIMBLE easier and more effective for system-to-system collaborations by reducing the risk of
semantic misalignment of complex data formats and shortening the time to setup digital
collaborations.

This document presents how the collaboration among NIMBLE and the TeBES test bed platform
has been implemented for supporting firms.

The following subjects are analysed in detail:

• the software architecture and logic of TeBES;

• how TeBES is embedded in the NIMBLE platform;

• the ontology-based tools to automatically generate test plans and rules tailored for the
customised processes adopted by the firms in NIMBLE. This is very important for the
sustainability of the services because it offers a good trade-off between the cost of an
effective and accurate testing strategy and the need for customisation of the
collaboration processes.

NIMBLE in a Nutshell

NIMBLE is the collaboration Network for Industry, Manufacturing, Business and Logistics in
Europe. It will develop the infrastructure for a cloud-based, Industry 4.0, Internet-of-Things-
enabled B2B platform on which European manufacturing firms can register, publish machine-
readable catalogues for products and services, search for suitable supply chain partners,
negotiate contracts and supply logistics. Participating companies can establish private and

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 3 of 56

secure B2B and M2M information exchange channels to optimise business work flows. The
infrastructure will be developed as open source software under an Apache-type, permissive
license. The governance model is a federation of platforms for multi-sided trade, with
mandatory interoperation functions and optional added-value business functions that can be
provided by third parties. This will foster the growth of a net-centric business ecosystem for
sustainable innovation and fair competition as envisaged by the Digital Agenda 2020.
Prospective NIMBLE providers can take the open source infrastructure and bundle it with
sectorial, regional or functional added value services and launch a new platform in the
federation. The project started in October 2016 and will last for 42 months.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 4 of 56

Document History

Version Date Comments

V0.1 19/04/2018 Initial structure

V0.5 20/06/2018 Draft release

V0.6 21/06/2018 Updated draft release

V0.7 22/06/2018 Update and modifications

V0.8 26/06/2018 Revisions and updates

V0.9 27/06/2018 Revisions and abstract preparation

V1.0 28/06/2018 Final revision and release

V1.1 10/12/2018 Revision after reviewers’ comments

V1.2 20/12/2018 Revision after second peer review

V2.0 31/12/2018 Final edits and Submission

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 5 of 56

Table of Contents

Abstract ... 2

NIMBLE in a Nutshell .. 2

1 Introduction .. 8

2 Standard adoption in business networks .. 10

3 NIMBLE requirements for test bed application ... 14

3.1 Flow of actions between NIMBLE and TeBES .. 16

4 Test relevance for NIMBLE .. 20

5 Test Bed Platform (TeBES) ... 24

5.1 Supporting adoption of standards by companies .. 24

5.2 Why a test bed platform? .. 25

5.3 Describing the test: Testplan .. 26

5.4 Implementing the test: TestAction, TestAssertion and input elements 27
5.4.1 Test Assertion and Test Suites ..28

5.5 Executing the test: TeBES platform .. 29

6 Testing in NIMBLE: Integrating TeBES and NIMBLE platforms ... 34

7 Testing in NIMBLE: generate Testplan from business knowledge .. 38

7.1 Ontologies & rules (in NIMBLE): the Test Plan Designer (TPD) ... 38
7.1.1 Rules Ontology ...39
7.1.2 Ontology of contexts ..41

7.2 Architecture of the TPD .. 43
7.2.1 Configurations ...44
Application configuration ..45
Translation configuration ..45
7.2.2 Specifying the scenario for which to create Test Plans ..46
7.2.3 Create a test plan ...48
7.2.4 Development ...49

8 Conclusions ... 52

Appendix A: The NIMBLE-Order Test Plan in XML .. 53

Appendix B: The NIMBLE Test case with references to NIMBLE-Order .. 55

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 6 of 56

List of Figures

Figure 1: NIMBLE - TeBES Sequence Diagram ..17

Figure 2: NIMBLE receives a document form external source and requires tests......................18

Figure 3: NIMBLE produces a document used by external module ...19

Figure 4: Simple NIMBLE use case for a business collaboration ..21

Figure 5: NIMBLE Process description on business collaboration among different companies .22

Figure 6: Test plan visual representation ...27

Figure 7: An example of TestAssertion for NIMBLE ..29

Figure 8: Test plan manager page of TeBES ...30

Figure 9: List of available user's test session on TeBES ...31

Figure 10: Test Session execution page ...31

Figure 11: Report for a test session ...32

Figure 12: Simple UML activity diagram on the interaction among the user and TeBES............33

Figure 13: listTestPlans GET call ...36

Figure 14: executeTestPlan POST call ..36

Figure 15: UML activity diagram of the collaboration among TeBES and NIMBLE37

Figure 16: Taxonomy of the NIMBLE ontology for Textile/Clothing sector................................43

Figure 17: The general TPD architecture ..44

List of Tables

Table 1: Acronyms table ... 7

Table 2: List of relevant consolidated requirements ..14

Table 3: RunTestPlan REST calls ...34

Table 4: RunTestplan JAVA methods ...34

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 7 of 56

Acronyms

Table 1: Acronyms table

Acronym Meaning

ABIE Aggregate business information entity

API Application Programming Interface

B2B Business to business

BBIE Basic business information entity

CRUD Create – update – delete

CSV Comma separated value

ebXML Electronic Business using eXtensible Markup Language

EDI Electronic data interchange

GUI Graphical User Interface

IEC International Electrotechnical Commission

ISO International Organization for Standardization

JSON Java Script Object Notation

LDPath Linked data path

NIMBLE Collaboration Network for Industry, Manufacturing, Business and
Logistics in Europe

PEPPOL Pan-European Public Procurement Online

RDF Resource description framework

REST Representational State Transfer

SDK Software Development Kit

SPARQL SPARQL Protocol And RDF Query Language

UBL Universal Business Language

XML Extensible Markup Language

TeBES Test Bed Platform

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 8 of 56

1 Introduction

The ultimate aim of NIMBLE is to optimize companies’ B2B operations throughout the supply
chain by orchestrating and automating data exchange among the participants of the supply
chain in different phases, such as sub-contracted manufacturing, transportation, etc. The
orchestration of almost automatic data exchanges is realized through business processes
involving at least two parties with specific roles feeding the process with relevant data.

The implementation of these business processes using NIMBLE implies the adoption of shared
and agreed elements that can hold the structure of the data exchanged among the participants
or actors. In many cases, B2B operations are controlled by software applications that manage
the collaborations, extract data from databases or generate documents starting from the
internal representation of the information. NIMBLE allows the application managers to express,
describe and implement the business processes agreed with other companies speeding up the
collaboration setting-up process, removing some obstacles to the electronic B2B and “greasing
the wheels” that move the collaborations.

Several markets are requiring the companies to increase their dynamicity and to create new
short-term collaborations with other industries: NIMBLE wants to ease this process by providing
all the tools necessary for such a type of collaboration.

Among these tools, the availability of a set of templates for business documents can contribute
in reducing the effort necessary for the creation of the information link among actors1: the more
these documents are well-known, shared and accepted, the faster can be their adoption and
less are the errors due to misunderstandings of the semantics of the data.

For this reason, NIMBLE has chosen to use the Universal Business Language and eBIZ/Moda-ML
as “suggested” sets of business documents for the collaborations, leaving in any case the
company the possibility of using specific, non-standard or personalized documents.

The adoption of a standard requires, also, that NIMBLE checks the format of the received and
produced documents in order to avoid mistakes (that arise very often).

UBL is a very general and universal language, taking into consideration almost all the possible
business cases and processes involving two or more actors exchanging business documents. For
this reason, it may be a bit cumbersome and thus, in some cases, a document instance cannot
be correctly interpreted by automatic systems even if they respect the standard.

Let us look at a simple example where an English company orders a set of shoes from an Italian
company selecting different sizes: UBL template for Orders contains information related to size
and, normally, it is a number with a single decimal. But in the UK the size of shoes for men has
a value, normally, between 7 to 14, while in Italy it starts from 34. Machines can misinterpret
this information when processing the order and they could start the production of shoes for
children or block the order as wrong.

1 E.g. In 2004, during the Leapfrog IP project (FP6 - NMP), the business document exchange between a
Textile Controller, a Textile Producer and a Garnment producer lasted for several weeks due to the
difficulties in understanding the information contained in different documents by the partner involved.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 9 of 56

 “Interoperability is the ability of two or more systems or components to exchange information
and to use the information that has been exchanged”.2 Proving the interoperability among
NIMBLE and user’s system is the objective of the tools developed in this NIMBLE task.

For this reason, two different types of testing have been implemented:

- the syntactic test (or conformance test), that proves the conformance of the document
against a precise structure of a template;

- the semantic test, that analyses whether the document can be correctly interpreted by
a machine.

The combination of these two different types of testing can guarantee a high degree of
interoperability among the systems that pass these tests.

These tests can be run using a test bed platform: a software tool that simplifies the execution
of the tests by supporting the user with interfaces.

This document presents the software solutions implemented into the NIMBLE platform to allow
the automatic creation of syntactic and semantic tests thanks to the introduction of “rules” that
documents have to respect.

Two types of tools have been developed to support the NIMBLE dynamic scenario for B2B
implementation:

- an advanced version of the TeBES test bed, enabling automatic testing without human
intervention;

- a test generator that extracts information from NIMBLE ontologies and creates the
necessary inputs for the test bed platform.

This document presents, after an introduction of the problems (chapters 2 and 3), the analysis
of the NIMBLE requirements that can be satisfied by the adoption of a test bed platform
(chapters 4 and 5), the description of the TeBES platform (chapter 6) and the activities done to
implement a testing system in NIMBLE (chapter 7 and 8) that can reduce the risk of introducing
errors originated by misinterpretations of business documents. A short conclusion section
(chapter 9) summarizes the results of the completed activities.

2 IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries (New York,
NY: 1990).

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 10 of 56

2 Standard adoption in business networks

Real time information exchange among heterogeneous and geographically distributed systems
is required to support the execution of complex e-business scenarios as those of NIMBLE.
Achieving seamless interoperability among heterogeneous communication systems and
technologies remains a great challenge in particular for the industrial world.

XML emerged as a foundation for performing e-business with an increasing adoption in the new
market economies. Based on XML, several interoperability standards emerged, which provide
specifications on performing business-to-business e-business, what information to share, when
and how.

Moving from the previous EDI (Electronic data interchange) general approach (like EANCOM or
UN/EDIFACT or ANSI X12 specification) in the direction of the new XML based standards,
different actions have been originated by different organizations and companies3. Even if the
approach of EDI is correct and widely used, its use is cumbersome, extremely rigid, and the
documents produced are complicated and not human-readable.

The ebXML initiative led by OASIS and UN/CEFACT provides an open, XML-based infrastructure
that enables the global use of electronic business information in an interoperable, secure, and
consistent manner by all trading partners. ebXML approaches all the collaborative layers, from
the data channel definition to business processes description and contractual agreement on
these transactions. It does not define the models for business documents.

In parallel with the development of the e-business framework, OASIS launched the UBL
(Universal Business Language) initiative: an open library of standard electronic XML business
documents for procurement and transportation such as purchase orders, and invoices of logistic
documents. UBL defines two main sets of elements required for e-business implementation:

- the list of described and supported business processes;

- the list of standard document types.

The latest version of the UBL standard, 2.1, contains more than 65 different templates of
documents and describes more than 15 different processes. Templates are written in XSD
Schema format and can be used to check the conformance of a document to UBL specifications.

Unfortunately, the generalising approach of UBL, stemming from the complexity of the e-
business description, has a negative impact on the efforts required to adopt this standard and
to use the information contained in a business document. Actually, documents have to cover
almost all the types of data structures available in business, leaving to the user the possibility of
choosing which one fits better his requirements but, on the other side, requiring a detailed
agreement on the shared data structure. A typical and simple example of this problem is related
to the creation of the data structure that implements an international address: the variety of
available formats ranges from a simple string containing the whole address to a set including a
dozen of different elements, mainly strings.

3 A partial list of business-related initiatives based on XML can be found at:
https://schemas.liquid-technologies.com/Category/Business

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 11 of 56

Looking at a typical UBL template two main aspects arise that may create confusion and
misunderstandings:

- high level of redundancy: elements are replicated in different positions in the document
in order to include all possible cases into a template;

- elements are recursive: an element may contain a replica of its own structure or one of
its ancestors.

These aspects reduce the readability of an UBL template both for humans and for applications
that do not know where to find the correct version of data.

For this reason, different organizations, sustained also by OASIS, have created a lot of UBL
subsets or customizations, reducing the number of elements and solving possible ambiguities
on the meaning of the elements. A single subset is identified as “Use Profile of UBL” defined for
a specific business context.

These customizations introduce a further level of templates that can be applied in specific
contexts.

Among these, two customizations, adopted in real business scenarios, are more interesting for
the NIMBLE project:

- PEPPOL4 the Pan-European Public Procurement Online project includes UBL
customizations and syntax serializations of different document types for European
business processes. The main goal of this project is to support the Public Procurement
across borders in EU;

- eBIZ-TCF5 a UBL customization available for the Textile Clothing and Footwear industry.
It includes the Moda-ML standard and uses a customised version of UBL for covering the
last part of the business chain. It has been adopted by partners involved in the Textile
Pilot.

Experience made in UBL suggested that a document can hardly be adopted AS-IS but needs some
adaptations and customisations by the users: these adaptations are formalised into a template
that, while conformant to the UBL rules, makes the document more readable by software tools.
The set of resulting templates, covering the different processes peculiar for a supply chain, might
be defined as a USE PROFILE of UBL for the specific case and has to be shared by the actors
involved in the business.

This subsetting approach has also been adopted in the NIMBLE Project. After specifying the
business processes in the NIMBLE use cases, relevant UBL documents have been identified and
they are customized according to the requirements of these use cases. As of writing of this
deliverable the following business processes and documents are potentially relevant for NIMBLE
(it should be noted that the number of business processes and business documents may increase
upon request from end user companies of NIMBLE):

a) Business processes potentially relevant (those in bold are actually under implementation in
NIMBLE):

4 https://www.peppolbasics.info/peppolineurope/

5 http://ebiz-tcf.eu/success-cases/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 12 of 56

1) Billing

2) CPFR (Collaborative planning, forecasting, and replenishment)

3) Fulfilment

4) Ordering

5) Payment

6) Production

7) Sourcing

8) Transportation

9) Information request

10) Negotiation

b) Documents identified as potentially relevant:

1. CatalogueDocument

2. CatalogueRequestDocument

3. CertificateOfOriginDocument

4. DespatchAdviceDocument

5. ForecastDocument

6. InformationRequestDocument

7. InventoryReportDocument

8. InvoiceDocument

9. OrderChangeDocument

10. OrderDocument

11. OrderResponseDocument

12. OrderStatusDocument

13. ProductionMonitoringDocument

14. ProductModelDocument

15. QualityReportDocument

16. QuotationChangeDocument

17. QuotationDocument

18. QuotationResponseDocument

19. QuotationRequestDocument

20. QuotationStatusDocument

21. ReceiptAdviceDocument

22. StockAvailabilityReportDocument

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 13 of 56

23. TransportationStatusDocument

24. TransportationStatusRequestDocument

During the experimentation phase, the Ordering process and the OrderDocument have been
used.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 14 of 56

3 NIMBLE requirements for test bed application

NIMBLE has defined several consolidated non-functional requirements (D4.5 – NIMBLE Platform
Evolvement – Recommendations, Requirements and Roadmap) that have to be satisfied by the
NIMBLE software platform and its components, to support all the possible uses of the platform
itself. The list of the consolidated requirements regards many different aspects and part of these
requires the adoption in NIMBLE of a test platform, such as TeBES, or can strongly benefit from
this adoption to fully implement them.

Table 2 contains the elements excerpted from the document D4.5 and contains those
requirements that imply the adoption of a test bed platform to be fulfilled.

Table 2: List of relevant consolidated requirements

Platform reqs. (DoA) DESCRIPTION

DoA-PL-02 The regional or sectoral platform instance is capable of
interoperating with other platforms in the federation, via semantic
interoperability services.

DoA-PL-03 Specialisations would be necessary to account for sector specific
practices and standards…

DoA-PL-08 NIMBLE objective: To master the usage of the platform step-by-step
to evolve business cooperation

DoA-PL-19 Services for matchmaking between producers and consumers are
available to establish business collaboration in a faster way

DoA-PL-26 Improve business integration between different sectors

DoA-PL-32 Grow trust on the platform by a) fair gain distribution among the
platform sides; b) maintaining strict interoperability; c) providing
privacy in B2B communication and data exchange

The following section presents the links among the requirements in the above table and the
services offered by TeBES.

As shown below, the interaction among NIMBLE and TeBES requires the definition of a testplan
necessary to perform the check.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 15 of 56

DoA-PL-02 - The regional or sectorial platform instance is capable of interoperating with other
platforms in the federation, via semantic interoperability services

The implementation of a new instance of the NIMBLE platform must respect several rules with
the objective of not to compromise the functionality of the other instances in the federation by
the introduction of incorrect information. This risk can be mitigated by the adoption of a set of
testing tools that check the conformance of the new instance to the strict requirements of the
federation. TeBES, as a test bed platform, can implement these rules into test plans and perform
detailed analysis on the way the new platform instance collaborates with the others.

DoA-PL-03 - Specialisations would be necessary to account for sector specific practices and
standards.

The implementation of a new NIMBLE instance for a new sector has to take into consideration
the specificities of the business context in order to keep as low as possible the initial cost that
the use of the platform requires. Several industrial contexts, such as Textile, have adopted
practices and standards to ease the collaboration among different actors in the supply chain. In
this scenario, the TeBES platform can be used both to refine and better configure the NIMBLE
instance for the correct adoption of those standards and to support new customers in the
process of adopting the standard for their business.

DoA-PL-08 - NIMBLE objective: To master the usage of the platform step-by-step to evolve
business cooperation

Evolution of the business collaboration implies also the possibility of adopting shared document
formats for business data exchange. Although the adoption of standards in a collaboration
requires considerable efforts by the participants, the TeBES platform can be used to support
these companies to gradually improve their familiarity with the characteristics of the standard
data format, to learn the correct usage of it in a protected environment, strongly reducing the
cost and the risk of this process.

DoA-PL-19 - Services for matchmaking between producers and consumers are available to
establish business collaboration in a faster way

The matchmaking process defines also the mutual agreement on how the collaboration can
behave, also taking into consideration the fact that the business partners can be conformant to
a sectorial standard. The TeBES platform can support the matchmaking process and
verify/guarantee to all the parties about this conformance.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 16 of 56

DoA-PL-26 - Improve business integration between different sectors

The adoption of public or common format for business documents (as UBL, for example) eases
the process of creating a strong collaboration on business, by allowing all the participants on
sharing information in a secure way reducing the misunderstandings (semantic interoperability).
A UBL document, for example an order or a catalogue, has a structure with a well-defined
semantics of the elements in the template: every company can read it and can correctly
interpret data contained in a real business instance of this template. TeBES can both reduce the
presence of mistakes in document instances and support companies in the process of adopting
the standard, enforcing the integration between different sectors or firms that implement a
common format.

DoA-PL-32 - Grow trust on the platform by a) fair gain distribution among the platform sides; b)
maintaining strict interoperability; c) providing privacy in B2B communication and data
exchange

This requirement implies that new versions of the NIMBLE platform, and consequently the
instances that use them, are strictly interoperable with previous version and do not require the
development of new tools from the companies or, even worse, break the active business of a
company. TeBES can test the interoperability of different versions of the NIMBLE platform
reducing this risk as much as possible.

3.1 Flow of actions between NIMBLE and TeBES

The use of TeBES, as detailed below, requires the identification of a testplan that acts as a
configuration document for it. The testplan can be selected from a list of already available or
uploaded through the web interface by a human user. For this reason, TeBES provides the
human user with a list of available testplan: the human user can define a subset of the relevant
testplan(s) and use this information to configure the NIMBLE platform.

After this configuration process is complete, the interaction between NIMBLE and TeBES does
not require direct action of human users anymore unless some modification in the configuration
is required.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 17 of 56

Figure 1: NIMBLE - TeBES Sequence Diagram

Figure 1 presents the flow of actions among NIMBLE and TeBES: the interaction is quite simple
because after the initial phase of configuration (steps 1 and 2) the successive collaboration can
be reduced to a single REST call to a remote service that returns the result of the validation. The
information on what to test and how to perform the test is all inserted into the testplans and,
thus, completely transparent for the NIMBLE platform.

Looking at NIMBLE document “D2.1 – Platform architecture specifications and component
design”, it is possible to identify which components can interact directly with the TeBES platform
to have information about the result of a specific test on business documents. In general, all
those components that can use data from external sources or that can provide information to
external users can have the necessity of testing the quality of the information received or
produced. In particular, the “Data Sharing Service”, the “Business Process Service” and the
“Catalogue Service” are those which this collaboration is more relevant.

Below, Figure 2 shows the case in which NIMBLE receives a document or a set of data from an
external module or source. Before using this data, NIMBLE can require a quality check to avoid
issues on the successive interpretation and use of these data inside the platform (e.g. in case of
incomplete or inconsistent data). Because the interaction with the external module has been
modelled and configurated before a real collaboration happens, in the NIMBLE configuration is
already present the information of which testplan TeBES has to use to test these data: by this
way the test can be completed without the human intervention.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 18 of 56

Figure 2: NIMBLE receives a document from an external source and requires tests

For example, in the case of the Catalogue Ingestion Process, several check can be performed:

• Existence of catalogue ids

• Existence of catalogue line ids

• Existence of manufacturer id in items

• Equality of line id and manufacturer item id

• Existence of product names

• Existence of at least one commodity classification inside the items

• Equality of catalogue provider party and item manufacturer ids of items included in the
catalogue lines

• Equality of catalogue document references ids with catalogue id

The symmetric situation is depicted in Figure 3: NIMBLE has to produce a document for an
external module (e.g. an XML version of an order to be imported into company’s systems) and,
to guarantee the quality of the data perform a test on the document before it is provided to the
company. Only if the quality check is positive, the document is automatically provided to the
external module, otherwise the NIMBLE manager is informed about the situation. As for the case
before, the collaboration with such an external module has been modelled before the
interaction happens, to the required testplan already identified in NIMBLE.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 19 of 56

Figure 3: NIMBLE produces a document used by external module

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 20 of 56

4 Test relevance for NIMBLE

NIMBLE as platform aims at reducing the “friction” for its clients when accessing B2B features:
entering a new network is, for almost all the companies, risky and costly. The reduction of this
friction eases the on-boarding process of new companies onto the platform.

 Contributing factors for friction can be:

- substantial efforts required from personnel and resources that thus cannot be spent for
the core business of the company;

- companies tend to buy services from external providers who want to sell their specific
software solutions in order to strengthen the link with clients: this can create a lock-in
situation that the clients can break by adopting standards.

Several actions can be taken to reduce this friction by simplifying the whole process of entering
new business networks.

Among others, the adoption of a common standard for business documents, together with the
clear definition of business process supported by the platform are two of the most relevant
aspects from the point of view of those companies that already have an internal management
system for production and administration.

Figure 4 below represents a common use case for NIMBLE: after registration, two companies
interact with the platform to publish their products and to look for potential providers of
products/services. After a positive match and the negotiation phase, the two companies can
agree on the use profile for the common standard they want to adopt for this collaboration. By
this step, they can receive data and documents from the other party, through NIMBLE platform,
directly into their management systems, without other human activities and involvement that
may create mistakes and introduce errors, as in the past.

The yellow circle identifies this action in the use case: lessons learned on connecting different
companies suggest testing the different applications separately towards an external platform
(as TeBES) before starting the interaction.

In fact, the largest part of the issues related to the process of translating data from the internal
representation to an external format arises from the misunderstanding of the meaning of
several descriptive elements of the new format: testing against a test bed platform highlights
these errors and provides elements to solve them, suggesting the correct interpretation of the
concepts expressed. In fact, a test bed platform may allow, when possible the verification of the
semantics expressed in a document, and not only the correctness of the syntactic structure of
it.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 21 of 56

Figure 4: Simple NIMBLE use case for a business collaboration

NIMBLE uses the business process representation as a key element for enabling the business
collaboration among companies and to reach a common objective that is the production of a
good or provision of a service. For this reason, the test bed platform has to start from this item
to build up the test process correctly: in any case, the objective of the test is to support the
companies in correctly implementing the selected business process.

Figure 5 represents a general business process between two companies: the process is launched
by the production of an order on NIMBLE and the consecutive share of this information with the
receiver. In the most common case, the receiver wants to get this information inside its
management system to plan the collection of necessary materials and the consecutive
production of goods. The simplest way (and the least error-prone) is that the receiver gets a
business document from the platform or directly from the other company.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 22 of 56

The business process can continue with the following exchanges of data about the production
and shipment supported, if requested, by the correspondent business documents.

Figure 5: NIMBLE Process description on business collaboration among different companies

In Figure 5, a pre-fabricated house producer (Lindbacks) order some modular bathrooms to the
manufacturer (Blatraden) and, after the production, a logistic operator (StochLog) is involved for
shipment.

The corresponding test of this specific collaboration requires a sequence that implements each
activity of this business process exactly as the companies do.

An example of this sequence (in XML format specific for testing) can be:

<TestActionList>
<TestAction id="TA-1_TP-NIMBLE" number="1">

 <ActionName>Check Order</ActionName>
</TestAction>
<TestAction id="TA-2_TP-NIMBLE " number="2">

<ActionName>Check Order-Accept</ActionName>
</TestAction>

 < TestAction id="TA-3_TP-NIMBLE " number="3”>
 <ActionName>Check Order-Info</ActionName>

 </TestAction>
 <TestAction id="TA-4_TP-NIMBLE " number="4">
 <ActionName>Check Product Info</ActionName>
 </ TestAction>
</TestActionList>

The text before, is a fragment of a more complex XML document that formalizes the testplan for
the above use case. It can be easily recognised a list of actions, some of them linked with the
steps in the business process in Figure 5.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 23 of 56

Despite the fact that the previous code is less immediate for the reader than Figure 5 a second
reading can help in recognising that it represents in another language the same elements of the
business process. It can be easily recognised that this plan covers both the aspects of the
collaboration, enabling the actors in testing their systems before the real business can be
started.

Even though the initial testing phase is completed correctly, errors in exchanged business data
may arise during the collaborations caused by external factors (for example modifications in
software tools by one of the companies, introduction of wrong data in internal databases etc…):
to avoid the risk of this situation the test of the exchanged documents, when requested by the
parties, can be done “on-the-fly” on the real data. In real business, anyway, documents have to
respect the syntax of the document and the semantic of the data: a test of these elements can
reduce the risk of exchanging wrong information thus creating misunderstanding and costs. In
this case, each step of the previous plan can be executed separately (e.g. when an order is
exchanged through NIMBLE) and automatically by a test service of the platform.

This NIMBLE feature for supporting tests, not already available on the other B2B platforms on
the market, reduces the risk related to the use of it and, thus, the frictions associated to this
process.

Implementing such type of tests in a dynamic business network, as the one originated by the
NIMBLE platform, requires the development of several software solutions:

- the realization of easy to use, M2M interfaces allowing NIMBLE to execute tests and
collect results in a machine treatable way;

- the creation of plans of test directly from the knowledge stored in NIMBLE (e.g. Products
data and business processes) without human intervention that may become
unsustainable for the platform.

Following sections of this document, in particular chapters 6 and 7, present the solutions
adopted to face these requirements starting from a general-purpose test bed platform.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 24 of 56

5 Test Bed Platform (TeBES)

5.1 Supporting adoption of standards by companies

UBL represents the more advanced and complete open standard, based on XML, for supporting
business processes in almost all the product markets, covering almost all aspects of the business
chain, from raw material collection to the consumer. However, as indicated before, the adoption
of this type of standards requires some efforts by companies that can be reduced by the
adoption of a specific subset or customisation of the document templates.

Several other actions can be planned and put on the table for supporting companies in adopting
the standard as UBL:

- a communicative approach with examples of successful cases and a clear definition of
the risk (mainly economic) related to this process;

- the support in identifying the company’s needs, requirements and expectations;

- the provision of tools that make less complex the changes in legacy software tools, as
ERPs, to accept new types of documents.

The first action is performed, normally, by the standard bodies (as ISO or OASIS) or by institutions
that have interest in standard adoption (as national government, in the case of invoices).

The second action is performed by software providers that use the standard in their solutions as
a key competitive factor and offer services to goods producers.

Finally, the last action is demanded to organizations involved in standard development or
adoption with skills on software design, in particular to research entities or universities. For
example, SRDC is supporting the adoption of the HL7 standard for health management with
different actions and software provision.

A test bed platform for interoperability testing is a tool that can be used to actively support
companies, and their software providers, during the process of adoption of a communication
standard based on ebXML and XML, such as UBL.

In most cases, the use of an XML Schema with a related validation tool, that allows the definition
of a document template and checks the document instances against its structure, is enough for
checking the elements that characterise the standards. However, it is not powerful enough to
support also the features of a use profile in such a way that most errors can be avoided.
Returning to the example of shoes in chapter 1, the XML Schema can state that a specific
element in the document has to be a number and the value must to be between a maximum
and a minimum. But it cannot check the value of an element upon the value of another. For
example, the statement “if the destination country is USA, then the size must be comprised
among 7 and 14” cannot be expressed by a XML Schema. To solve this problem using only XML
Schema, it should be necessary to define a document specific for a single state or region. So far,
to support all the countries in the world and possible cross-boarding business collaborations the
number of necessary templates may become very large for managing only one element.

XML Schema allows the “syntactic validation” of the document: it checks if the document is
correctly formatted, its structure and data delimiters are in the correct position.

For this reason, what is advisable id the adoption of a validation tool in order to create
conditional rules between elements in one document or more. In this scenario, Schematron is a

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 25 of 56

rule-based validation language that allows to verify the presence and absence of patterns in XML
documents.

For example the simple rule “the order identification number must be the same in all the
documents originated from that order”, quite common in business processes, can be easily
expressed using Schematron without the necessity of creating an application doing that.

Different from XML Schema, Schematron does not define a single document template but a set
of rules that a document must respect to become a valid document in a specific profile.

Furthermore, it allows the creation of rules that involve a whole set of documents, as the
previous one.

Schematron allows the “semantic validation” of the content of a business document, by
checking the meaning of elements containing data that are present in the document itself.

While in some cases the syntactic validation is enough for establishing business collaboration,
more often the semantic validation is required to avoid misunderstandings on data meaning and
misinterpretation of the business documents.

5.2 Why a test bed platform?

The instantiation of business collaborations among different actors who are active in a supply
chain is simplified by the adoption of specific use profile of the UBL standard in NIMBLE project.
The use profile allows the definition of a set of rules that each document must respect to be
considered a valid business document during the collaboration and, on the other side, can
provide semantic information on the data contained.

The operation of checking all of these rules in one or more documents can be relatively long and
costly. For this reason, the CEN organization launched the GITB (Global eBusiness
Interoperability TestBed) initiative that “focuses on methodologies and architectures that
support e-business standards assessment and testing activities from early stages of eBusiness
standards implementation, to proof-of-concept demonstrations, to conformance and
interoperability testing”6.

The GITB initiative, in the normative documentation released in 2012, has defined several
aspects, such as methodologies and architectures, for the document testing process. The GITB
initiative moves from the assumption that the testing activity is a key prerequisite for e-business
interoperability due to the fact that “it is still cumbersome for software vendors and end-users
to demonstrate full compliance with the specified standards and to achieve interoperability of
the implementations”7. This sentence has two faces:

1) there is a lack of instruments that can demonstrate the full compliance of a software
solution to a specific standard and/or to a specific use profile;

6 https://www.cen.eu/work/areas/ict/ebusiness/pages/ws-gitb.aspx

7 CEN – CWA 16408:2012 ftp://ftp.cencenelec.eu/CEN/WhatWeDo/Fields/ICT/eBusiness/WS/GITB/CWA_16408.pdf

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 26 of 56

2) the effective interoperability among two or more implementations is not guaranteed by
the simple fact that all actors use the same standard or even the same profile.

For these reasons CEN suggested the implementation of well-defined testbed solutions that can
“certify” that a software solution is fully compliant with a standard.
In 2012 ENEA has launched an internal project, called TeBES, for implementing a GITB compliant
solution for supporting interoperability testing and standard fostering in productive sectors.

The two main key elements in the GITB architecture are:

- modularity of the software components that are expected to be interchangeable;
- separation between the software modules of the platform and the instruction for

planning and executing tests (descriptors of the planning, descriptors of the test); this
allows to reuse the same platform for different types of tests on different domains.

The main benefit of this approach is that the same software platform might be used for many
different kinds of test and test strategies with different specifications without changing the
software.

In the next sections a short overview of the platform is presented with a focus on the instructions
for the platform, organised in test plan, test actions and test suites.

5.3 Describing the test: Testplan

The main objective of a testbed platform is to support software vendors to demonstrate the
compliance of their software solutions with a specific standard or to a part of it. The Testplan is
a sort of guideline, human readable, which on one side allows the testbed platform to execute
the test according to a strategy and, on the other, inform the user on how the test will run.

Examples of different testing strategies: “one-shot conformance test” (all the rules and
constraints are applied in a single step of validation); “learn step by step by example“ (different
sets of rules are applied in a path that, through a number of steps, leads to the complete
conformance assessment of a type of templates).

The Testplan is an XML document composed by different elements, from general information
for the end user to more specific instruction to execute the test.

Figure 6 gives an idea of a very simple Testplan that aims at syntactically validating a NIMBLE
order using a specific XML schema. In this case, the Testplan is composed by a single action.

The header is a simple textual description of the Testplan identified by a clear name, a short
description and several auxiliary information on the creation date and successive updates. The
“state” descriptor indicates if it can be improved in the future or not.

The “actions” section contains more operative data about the test, and in particular the list of
actions that constitute the test plan. Each action is composed by a “test resource” that indicates

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 27 of 56

what to test and by one or more inputs that are the objects to be tested. A detailed description
of the concept of Testaction is presented later on this document.

Figure 6: Test plan visual representation

5.4 Implementing the test: TestAction, TestAssertion and input
elements

Looking at Figure 6 it is worth to note that the test actions are composed by three main parts:

- a simple description of the action;

- the definition of the test resource, which identifies the type of action and the remote
resource that contains operative data about it;

- the definition of a list of inputs to feed the test engine.

One of the objectives of TeBES is reusing as much as possible all resources related to a single
test by decomposing it into simplest elements that can be recombined to create new test plans.
The reason for this is the high effort necessary to think and formally describe the rules to be
used in an interoperability testing strategy: they usually embed a high-level knowledge on
interoperability and on specific domains.

While the test action is composed mainly by two parts, such that the first part identifies what
and how to test and the other that indicates the input elements that must be tested, it is possible
to reuse the same resource data to build up a new test action that may have different input.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 28 of 56

5.4.1 Test Assertion and Test Suites

Few elements characterise the test items:

- the type of the resource as in the CEN CWA indicated before;

- the XML based language that describes the resource (in this case TAML);

- the parameter that allows skipping of all prerequisites (elements that otherwise have to
be tested before the current one);

- the link to the implementation of the resource.

In order to simplify the reuse of knowledge already available, the different resources are put
together into a Test Suite that contains different resource semantically or logically linked to each
other. For example, the Test Suite for the NIMBLE platform will collect all the test resources
connected with this platform.

Looking at the test suite XML file, it is possible to notice several elements:

- a short description containing also the identification code of the test suite itself;

- a set of common resources (for example the XSD schemas);

- a list of Test Assertions that are the core of the test.

The test assertion defines the “rules” that a document must respect, the prescription level for
this rule and some response for reporting results. It also defines what type of input is expected
by the Assertion (in this case an XML document) and what output is produced (the part of the
final report on the test).

Figure 7 gives an example of a TestAssertion created for the NIMBLE TestSuite. It is worth to
note that some elements are empty, in particular the part of the Normative Sources for the test,
which do not apply for NIMBLE at the moment because a specific standard for business
documents has not been selected, yet.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 29 of 56

Figure 7: An example of TestAssertion for NIMBLE

5.5 Executing the test: TeBES platform

The GITB infrastructure for testing is quite simple: few elements can be used, using powerful
tools such as XML Schema and Schematron, to describe almost all possible scenarios for testing
the interoperability among different software systems.

The TeBES platform is a web-based8 application that allows the implementation of the Testplans
as a set of actions that requires the interaction with the user (human or not-human) through a
precise path described in the Testplan itself. This path is determined by both the actions
contained in the Testplan and the order of these actions. Actions can be simple (for example
requesting the upload of a single document) or complex, requiring multiple inputs in the correct
order.

8 A beta version of the platform is at link: http://winter.bologna.enea.it/tebes2. Dummy user for testing
the platform is: username=”dybuwy@yahoo.com”, password=”password” without quotes.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 30 of 56

After a simple login page (or registration for new user), the user can view/run the Testplans,
choose or modify the “System Under Test” options or receive information about past and active
testing sessions.

Figure 8: Test plan manager page of TeBES

A set of example test plan is already available on the platform: users can use them or create a
new one by uploading the necessary XML files. After this process is complete, the Testplans are
available in this page and can be run with a new test session.

At this point it is necessary to briefly introduce the concept of SUT (System Under Test) that
represents the object that the user wants to test against a Testplan: few data are necessary to
identify the SUT. In the case of NIMBLE, the SUT is the legacy system of the user and is always
characterised as a system capable of uploading documents (even without the supervision of a
human user). A single user can define one or more SUTs.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 31 of 56

Figure 9: List of available user's test session on TeBES

After the identification of the Testplans and SUT, the user can access a list of test sessions
already completed or new ones.

The execution of a test session is shown in Figure 10: this page allows the user to insert/upload
the necessary inputs produced by the SUT that can be tested using the rules specified in each
test action. In this case, the test plan is testing the validity of a NIMBLE order and requires as
input an XML instance of this order.

Figure 10: Test Session execution page

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 32 of 56

After the completion of all the actions in the Testplan, the complete report is available on the
Test Sessions page.

A report showing that the document is not a valid NIMBLE-ORDER is shown in Figure 11

Figure 11: Report for a test session

In this case, the message in the last part of Figure 11 indicates that the test has failed and shows
the error message originated by the system, allowing the user to understand what errors have
been found.

Using more complex rule sets or Schematron tools it is possible to increase the quality of the
test thanks to tests on the semantic validity of the document by the same way: when an error is
detected, the causes are reported in this part of the report to support the improvement of the
SUT.

Figure 12 depicts a simple UML diagram of the use of TeBES platform, as a web-based service,
to test the semantic and syntax of a document. The user generates a document and selects
which testing activity to run. After the upload of the document is completed, TeBES runs the
specific Testplan and produces the report, sending it to the user. The evaluation of the testing
report by the user can allow the improvement of the document (e.g. some errors are corrected)
and the loop of this process until the test is passed.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 33 of 56

Figure 12: Simple UML activity diagram on the interaction among the user and TeBES

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 34 of 56

6 Testing in NIMBLE: Integrating TeBES and NIMBLE
platforms

In a B2B scenario in which the data transactions are mediated by a platform such as NIMBLE,
the testing activity requires different improvements to allow the NIMBLE platform to:

- support the users with the process of adopting a standard or starting a new
collaboration (for example with a partner that requires modifications on exchanged
documents);

- check the documents correctness before importing and, successively, forwarding it to
recipients;

- identify possible errors in documents originated by software that has been modified or
newly developed (for example during the conversions from one format to another).

Human interfaces are necessary only for the first bullet point, while for the others direct and
faster computer-to-computer interfaces are required so that the provisioning of services
substitutes human intervention.

NIMBLE is a platform using largely the REST technologies for data exchange and interaction
between the different software components: for this reason TeBES has been provided with a
simple REST interface for interacting directly with the other software components in NIMBLE.

For this reason, a set of simple REST calls have been set up:

Table 3: RunTestPlan REST calls

Service Name Service Path Service Description

listTestPlans (GET)

Lists

Header: Token

Returns the list of available test plans, in JSON
format, for the specific user identified by a token
string obtained by the identity manager
implemented in NIMBLE

executeTestPlan
(POST)

executeTestPlan

Header: token

Param: XMLInput

Param: TesplanId

Returns the JSON string with the result of testing
activities using the TestplanId and the content of
the XMLInput

Together with REST calls, a set of JAVA APIs is available for accessing the same services.

Table 4: RunTestplan JAVA methods

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 35 of 56

Method Name Method Parameters Method Description

listTestPlans

String Token Returns the list of available test plans for the
specific user identified by a token string
obtained by the identity manager implemented
in NIMBLE

executeTestPlan

String Token
String XMLInput
String TestplanId

Returns the result of the testing using the
TestplanId and the content of the XMLInput

listTestSessions String Token Returns the list of user’s test sessions that
contain the data about previous testing
activities

Using a RESTFul client as Postman9, it is possible to test the calls and send to TeBES the data
necessary to simulate the collaboration with the NIMBLE platform.

On the other side, it is necessary to develop a RESTful client in NIMBLE that allows the “on-the-
fly” test of the documents.

The following images are screenshots taken from Postman showing the results of the different
calls:

Figure 13: The call listTestPlans returns the user’s available test plan, in this case the one related
to the NIMBLE-Order. This information allows the user to select which Testplan to run. It requires
as input the identity token managed by NIMBLE platform.

Figure 14: the POST call executeTestPlan get as input the XML file (as a String uploaded through
Postman), the number of the Testplan and the user’s token to run the test. It returns a general
status of the test (failure or success) and a link to the full report.

In the real collaboration among NIMBLE and TeBES, the REST calls are automatically made by
NIMBLE. Successively, it processes the results of the test and decides the successive actions after
the testing phase ends.

9 Available at: https://www.getpostman.com/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 36 of 56

Figure 13: listTestPlans GET call

Figure 14: executeTestPlan POST call

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 37 of 56

Figure 15 provides a simple UML activity diagram that indicates how the collaboration with
TeBES and NIMBLE can reduce the risk of input errors into the platform due to business
document containing wrong data.
The user’s legacy system (External application) creates a business document (e.g. an order for
another user) and sends it to NIMBLE using a communication channel. The NIMBLE platform
receives the document and asks TeBES for syntactic and/or semantic tests. TeBES collects
information about the context and creates the set of rules to be verified on this specific
document. After the test is complete, TeBES shares the result with NIMBLE that, based on this
result, can accept or refuse the document. In the last case, it can inform the user about the
situation (e.g. sharing the result of the test) asking for document improvements.

Figure 15: UML activity diagram of the collaboration among TeBES and NIMBLE

In this scenario, the test phase may be facultative for the user involved in the business process:
only if the receiver asks NIMBLE for document verification, the testing process on the incoming
documents can be activated.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 38 of 56

7 Testing in NIMBLE: generate Testplan from business
knowledge

NIMBLE is facing a dynamic productive world where the separations among different supply
chains are not so clear and defined and the same business process changes rapidly. For this
reason it is not reasonable to create the necessary Testplans manually starting from the actual
business processes present in NIMBLE but it is necessary to implement a solution that is able to
extract information from the internal knowledge bases and use it to create Testplans.

In NIMBLE there are already ontologies containing knowledge about the business plans
implemented for different sectors (partially extracted from UBL and similar initiatives) and they
are a very good source of information for building up a Testplan in a dynamic way and only when
requested.

In the following sections the technical solution for this issue adopted by the project is reported.

7.1 Ontologies & rules (in NIMBLE): the Test Plan Designer (TPD)

The general idea is to get knowledge about the sectorial processes already described by the
NIMBLE ontologies, describing the general knowledge about the most frequent supply processes
in general and the requirements (rules) for testing related to specific domains and goods.

The aim is to be able to automatically generate Testplans and test resources tailored for the
specific needs thanks to:

1) mechanisms of inheritance of requirements thanks to the hierarchical classification of
the processes and transactions and the goods they are dealing with and the domains,

2) specialization mechanisms that transform abstract rules into syntax specific rules that
are executable for a specific language or specification (like UBL) through a mapping.

The Test Plan Designer (TPD) is a software module designed and developed to automatically
generate test plans that feed the Test Bed Platform (TeBES) using knowledge stored in different
ontologies.

The TPD receives as input a description of the business scenario for which the test plan has to
be created, and through a series of elaborations and subsequent steps, generates a set of linked
files that constitute the test plan.

The ontologies in NIMBLE contain data about the specific business plan and, therefore, can
define completely the relevant business scenario in terms of involved actors, necessary
activities, data transactions and items exchanged. The group of these ontologies is defined as
the “Context Ontology”. However, the knowledge already presents in NIMBLE is not enough for
building the Testplans because the rules are not defined, yet. A rule is a statement that a

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 39 of 56

business document must observe to be compliant with a standard profile. The abstraction of
these rules into a set of abstract rules that can be proved on almost all types of business
document constitutes the “Rules Ontology” that is used by the software for creating Testplans.

The definition of the abstract rule set will be done together with NIMBLE use cases leaders if
necessary.

The two ontologies are strongly different: while the Rules Ontology is simple but rigidly
specified, and must be respected for the functioning of the TPD, the Context Ontology is not
strictly fixed, but may vary depending on the use and of the rules that must be created.

7.1.1 Rules Ontology

The “Rules Ontology” contains the definition of the concept of Rule, and of all its properties.
These properties allow defining the context of application of a rule, and to fix all the information
associated with it. Rules can be organized in taxonomy, created freely.

To describe the concept of Rule, some existing properties are used (with namespaces rdf, rdfs
and owl, for example) and, moreover, some new properties have been defined. The complete
list of the properties used to manage the Rules Ontology is as follows:

Property Abstract Name Description
rdf:about Instance/rule identifier Identifier of the instance of the

rule in the ontology
rdfs:label First name Rule name
rdfs:comment Description Text description of the rule
tr:isAppliedTo is applied to Indicates the extent of the

ontology to which a rule is to
be applied

tr:hasRule has rule Indicates a rule that is defined
on an entity

tr:hasScope has scope Indicates a business scope in
which a rule is valid and
applicable, multiple scopes can
be specified (united with a
logical AND)

tr:Hasid Identifier rules Further identifier of the rule in
the ontology (not necessary,
the instance ID can also be
used)

tr:hasPrescriptionLevel Prescription level
(importance) of the rule

Indicates the type of
importance of the error in the
rule (for example with
indications like warning, error)

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 40 of 56

tr:hasAbstractRule Abstract rule Provides the abstract
formalization of the rule

tr:hasAbstractContext Abstract backdrop Provides the validity context of
the rule for its Schematron
implementation

tr:insertedBy Posted by Specify who has inserted into
the ontology the rule

rdfs:isDefinedBy statement Defined by Indicates who has defined and
formalized the rule with its
properties

tr:hasInsertDate Date of input Date when the rule was
entered into the ontology

owl:versionInfo Version Version of the rule
owl:deprecated It is deprecated Indicates if the rule is

deprecated.
tr:useTechnology Technology adopted Indicate how and with what

technology the rule is
implemented

tr:hasPriority Priority Indicates the priority of the
rule

tr:hasParameter Parameters Provides the parameters of the
rule

tr:hasImplementation Implementation file Indicates the files in which the
verification/execution of the
rule is implemented

Not all of these properties are mandatory in the description of a rule, only those highlighted in
green. These are the rules that define the context of application of the rule and its abstract
formalization. Some properties were included thinking about a support for future
developments.

In particular, the properties tr:isAppliedTo and tr:hasScope can refer to an external ontology
(which can change, and be chosen according to the needs) that defines the concepts of the
business.

For example the definition of a simple abstract rule (where a specific context is not defined)
could be:

- IDRule
rdfs:label ID Rule-01
rdfs:comment The document must have an identifier in any case.
tr:isAppliedTo Document
tr:hasPrescriptionLevel fatal
tr:hasAbstractRule $id

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 41 of 56

tr:hasAbstractContext /*
tr:insertedBy John Smith
rdfs:isDefinedBy statement AENEAS
tr:hasInsertDate 01/10/2017
owl:versionInfo 1.0
owl:deprecated no

This rule is very generic and states that every business document must be identifiable through
a unique ID number, helping all the parties in avoiding confusion about the single document and
its content. It can be assumed as valid for every specification on business documents.

But, written has “$id”, this rule cannot be easily verified in a document because the system is
not able to recognize in the document which element contains the data related to the id number.
For this reason, in addition to the definition of the generic rule, it is clearly necessary to define
a mapping table (see the Translation configuration section) that translates the abstract version
of the rule into an executable rule.

7.1.2 Ontology of contexts10

The “Context Ontology” provides the basis for specifying the context of application and validity
of the rules defined in the rules ontology. This ontology is not necessarily a static one, but it can
be changed according to the rules that must be defined and precisely to their context of
application. The ontology of contexts can also be the sum of various ontologies, each of them
specialized in a particular area, which are included and integrated with each other.

Within the ontology of contexts, it is possible to define up to a maximum of 5 independent main
concepts: Activity, Actor, Commercial Good (Product?), Document and Process.

These concepts define the application context of the rules (see section "Specifying the scenario
for which to create Test Plans").

Concepts inside this ontology are inter-related to each other in a specific business context: for
example the Process “Stock” is linked to the Activity “Stock Offer” that implies the exchange of
the Documents “Stock Offer”, “Stock Offer Change” and “Stock Offer Status”, furthermore it
involves the Actors “Yarn Producer” and “Textile Producer” in the category “Producer” and
allows the stoking of Goods “Yarns”.

As the example suggests, the combination of all the concepts in the ontology provides a
description of the whole Textile/Clothing sector in terms of possible business processes,
involved actors, activities to be performed, goods to be produced and documents exchanged.
However, some of the possible combinations are simply not allowed by the reality of the

10 Structured representations of the business processes that are currently supported by NIMBLE can be
fetched from: http://nimble-staging.salzburgresearch.at/business-process/content

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 42 of 56

business: the Actor “Logistic Operator” is not involved in the “Production” process at all. This
knowledge is stored inside the Context Ontology and used by the TPD to create correct rules for
specific business process, avoiding un-real business scenarios.

In the case of the ontology set up for NIMBLE in the Textile/Clothing sector, for example, the
taxonomy (represented only partially for reasons of space) is the following:

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 43 of 56

Figure 16: Taxonomy of the NIMBLE ontology for Textile/Clothing sector

7.2 Architecture of the TPD

The general architecture of the TPD is shown in the following figure:

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 44 of 56

Figure 17: The general TPD architecture

As depicted in Figure 17, the main components are:

1. Test Plan Designer (TPD): main component that acts as the manager for the
creation of test plans, controlling the operation of the other components.

2. Ontology of the rules + Ontology of the context. Ontologies that contain the
abstract business rules defined and allow specifying the business context for which the
rules are valid.

3. Test Rule Collector (TRC): component that collects from the rule ontology,
according to the settings received as input from the TPD and the user configuration, the
abstract rules to be used for test plans.

4. Test Rule Translator (TRT): component that takes the (abstract) rules previously
collected and transforms them into concrete and executable rules to be included in the
test plan.

5. Test Plan Formatter (TPF): using the concrete rules, the TPF sets and configures
the files for the management of the test plan. These are the files that are finally used by
TeBES to set up, configure and run the tests.

All these components rely on configuration files that allow specifying some parameters.

7.2.1 Configurations

The functioning of the TPD and its components is regulated by a set of configuration files that
determine the running parameters.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 45 of 56

There are in particular two types of configuration files:

- one that adjusts the operation of the application;

- one that sets the mapping tables necessary to manage the translation of the rules from
abstract into concrete (see later).

Application configuration

The tdp.properties file (which is unique) concerns the general operation of the application and
sets:

- the ontology to be loaded, all the relative files to be imported into the ontology and the
prefixes to be used to collect the rules;

- the indication of the various areas that form the possible context in which a rule can be
valid;

- the directories where to save the output files;

- the empty templates to use and fill in to create files for the test plan. These templates
are used to define and set the basic structure (still empty and to be compiled) of the
output files. They are loaded and completed with the information collected by the
ontology and then transformed;

- the “objects” (with the relative context) that will be tested by TeBES (see next section
on Input) through the application of the test plan generated by the Test Plan Designer.

Translation configuration

In the abstract rules, some parameters appear that must be transformed into values in order to
have the concrete rules to be applied.

For example, an abstract rule for testing if the version of the template document is as expected
could be in the form:

not ($ version) or ($ version = $ lastVersion)

Where the '$' symbol identifies a parameter whose value depends on the standard or format
that is used and therefore to be tested.

To be able to translate abstract rules into machine executable ones, it is therefore necessary to
set, for each standard, a mapping table. This table allows the translation of abstract rules into
executable rules specific for the adopted standard by mapping the generic parameter “$version”
with an item defined in the standard.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 46 of 56

These parameter mappings are contained in a file that is named " NameStandard.properties ",
for example for the UBL standard there will be the UBL.properties file or for the ModaML the
ModaML.properties file will exist.

The content of one of these files is in the form:

translation of the rules in ModaML #

#STANDARD
name = Moda-ML

NAMESPACE
are the prefixes that must appear in the schematron files
to be able to use correctly the rules XPath
Prefix1= mml
NS1 = urn:moda-ml:repository:schema:TEXOrder

STANDARD GENERAL VARIABLES
$ id = msgID
$ version = @version
$ lastVersion = '2013-1'
$ price = price
$ useProfile = @ useProfile
$ requDocType = child::*/child::refDoc[@docType = 'ORD']
$ docRefType = refDoc / @ docType
$ ordType = 'ORD'

...

....

Taking information from the mapping file specific for MODA-ML, the generic rules that test if
the version adopted is the correct one become:

not (@version) or (@version = “2013-1”)

This rule, in the XML Schema Language, tests if the document attribute “@version” does not
exist or its value has to be equal to “2013-1”.

Depending on the “tr:hasPrescriptionLevel” item in the generic rule, the test bed returns a fatal
error or a simple warning if this rule is not satisfied.

7.2.2 Specifying the scenario for which to create Test Plans

One of the main inputs of the Test Plan Designer specifies which are the "objects" or business
items that must be tested by TeBES, and for which business context this test must be prepared.

We define "Entity" as the object we want to test, and “Context” as the description of the
elements within which the Entity is to be tested. The Context effectively represents the context
of use of the entity.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 47 of 56

For example, we may want to test an “Order” business document thus we assume it is the Entity.
This document can clearly be adopted in different situations (Textile, Appliances, Furniture for
example), thus requiring different checks and controls based on its use. The context in turn is
composed of different scopes (Scope) that represent its various aspects.

We define then:

Entity = object to be tested

Context = context in which the Entity is tested

Test scenario = Entity + Context

In Nimble, a “test scenario” can comprise a maximum of 5 main “scopes”, which are what we
have identified as the main elements in a business document exchange scenario. These areas
are: Commercial Good (Product), Process, Activity, Document, Actor.

Commercial Good: it is the object of the business transaction (for example a fabric or a yarn), of
the exchange of information, or anyway involved in the test scenario.

Process: it is the business process in progress (for example the Textile Supply process), which is
in turn made up of various activities.

Activity: it is a sub-component of the process and specifies an action that must be carried out
(for example, sending a catalogue or another document).

Document: the document that is exchanged in the activities (for example Order document or
Catalogue)

Actor(s): the subjects that act within the processes and activities, exchanging documents or
performing other actions. For example: Supplier, Subcontractor, Logistics manager.

A complete test scenario therefore may consist of:

Entity=Order Document

Context=Product, Process, Activity and Actor.

Specifying to the TPD which test plan to create means mainly to specify, within the
tdp.properties file or through the methods provided (with direct function call):

- one and only one entity to be tested;

- a single context formed by the remaining areas.

The ontology is therefore the means by which the Entity and Contexts, which are to be
considered in creating the test plans, are identified.

The terms to be used must be taken from the context ontology that has been specified in the
configuration file.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 48 of 56

The test scenario in the configuration file is indicated by specifying 2 variables, so it has

- a key-value pair that specifies the Entity

- a key-value pair that specifies the Context

These two pairs are connected to each other by an index: then the key pair is always of type
EntityN, ContextN. By this way, in the configuration file, it is possible to indicate a long list of test
scenarios at once, for each of which the corresponding test plan will be created.

For example, if you use the tpd.properties file as input, to specify the tests to be created, it is
possible to write the file as following:

Entity1 = pad: ModaMLTextilePurchaseOrder
Context1 = pad: ModaMLFabricSupply; pad: ProducerActorType ;

Entity 2 =
Context 2 =

As you can see, you must always use the namespace prefixes, as also indicated in the
configuration file. In the case of the value of the context, its scopes, if there are more than one,
must be separated by ";".

The above example requests basically to create firstly a test plan to test the Entity
ModaMLTextilePurchaseOrder (which represents the document of "Purchase order of
fabrics" for the Moda-ML standard), in a context formed by:

ModaMLFabricSupply: it indicates that we are in a process of supplying fabrics.

ModaMLRetailOrganisation: it indicates that the reference actor is a retail company.

This is followed by the request to create a subsequent test plan. In fact, in the configuration file
you can specify, one after the other, several EntityN, ContextN pairs for which to create the test
plans. The TPD will consider them one after the other, creating for each the necessary files,
differentiating them and naming them according to the entities indicated.

7.2.3 Create a test plan

The creation of test plans consists of the production of a set of files that allow the verification
of the abstract business rules instantiated in a specific context.

Having defined all elements that are involved in the scenario of creating a test plan for a specific
context, we can look at how the system works.

When launched, the TPD looks at the configuration file (or at the incoming arguments) to:

- instantiate information about the specific context and item to be checked;

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 49 of 56

- prepare the common environment with all the relevant data available for the other
modules.

When this process is complete, TPD calls the TRC asking for a collection of generic rules that are
valid for the entity and context previously described. TRC interrogates different ontologies to
get all the necessary information together and provides these data to the TPD.

After this action is completed, TPD asks the TRT to translate the abstract rules into specific (and
executable) rules. TRT loads the mapping file for a specific standard and performs the
translation, providing the TPD with a set of executable rules.

In the end, the TPF puts all the data together and prepares the necessary files, which are:

- a schematron file (.sch), which includes the business rules translated into schematron
executable code;

- an XML file that contains the Test Assertions, which collect and encapsulate the rules
implemented in the schematron files and some meta-data for their use;

- an XML file that describes the Test Plan, which organizes and sorts all the Test
Assertions.

The file that describes the Test Plan is the main one: it is used by TeBES for orchestrating the
execution of the tests, and in cascade recalls the other files.

The TPD, in addition to creating the files for the execution of the tests, produces a text file (eg.
Document_ModaML_1_ListOfUntranslatedRules.txt) in which it indicates the abstract business
rules that were collected but not translated and therefore not included in the Test Plan,
indicating the motivations and the occurring problems (e.g. because the map file prepared for
the standards are not complete and lacks the definition of some parameters), allowing the
further improvement in the mapping file.

7.2.4 Development

The TDP application was developed in the Java language. For each of the components of the
application a specific .java file has been created, so the files are:

- TPDesigner.java

- TPRuleCollector.java

- TPRuleTranslator.java

- TPFormatter.java

In addition to these modules, one has been developed for the management of the set up and
configuration of the application, and for the setting of all the parameters that regulate the
operation.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 50 of 56

Specific data structures (beans) were created to represent two fundamental elements for the
creation of test plans:

- Entity: is a data structure that specifies both the entity for which the test plan is being
created and the context for which the test plan is defined.

- Rule: is a data structure that describes a rule to be included in the test plan to be
verified. It also contains its abstract formulation.

The structure “Rule” substantially reflects the information and the model defined in the rule
ontologies. When the collector has to collect the rules (defined in an abstract way) to create a
specific Test Plan, it executes SPARQL queries on the Rules ontology, and it organizes the
extracted information using the Rule structure. This structure is then passed to the
TPRuleTranslator, which translates and produces the schematron code.

For example, in order to select rules related to the test scenario

Entity1 = pad: ModaMLTextilePurchaseOrder
Context1 = pad: ModaMLFabricSupply; pad: ProducerActorType; goods: Fabric

The following SPARQL query is executed:

PREFIX pad: <http://www.moda-ml.org/moda-ml/Ontologies/Moda-
ML/ModaML-ProcActDoc.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX goods: <http://www.moda-ml.org/moda-ml/Ontologies/Moda-
ML/CommercialGood.owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX tr: <http://www.moda-ml.org/moda-ml/Ontologies/Moda-
ML/TestRules.owl#>
PREFIX gpadm: <http://www.moda-ml.org/moda-ml/Ontologies/Moda-
ML/GPADModel.owl#>

SELECT DISTINCT ?x ?a ?b ?c ?d ?e ?f ?g ?h ?i ?l ?m ?n ?o
WHERE
 { pad:ModaMLTextilePurchaseOrder (rdf:type)*/(rdfs:subClassOf)* ?y2
.
 ?x tr:isAppliedTo ?y2 ;
 tr:hasScope ?w0 .
 pad:ModaMLFabricSupply (rdf:type)*/(rdfs:subClassOf)* ?w0 .
 ?x tr:hasScope ?w1 .
 pad:ProducerActorType (rdf:type)*/(rdfs:subClassOf)* ?w1 .
 ?x tr:hasScope ?w2 .
 goods:Fabric (rdf:type)*/(rdfs:subClassOf)* ?w2
 FILTER NOT EXISTS { ?x tr:hasScope ?z0 .
 ?z0 (rdf:type)*/(rdfs:subClassOf)*
gpadm:Activity
 }
 FILTER NOT EXISTS { ?x tr:hasScope ?z1 .
 ?z1 (rdf:type)*/(rdfs:subClassOf)*
gpadm:Document
 }
 OPTIONAL

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 51 of 56

 { ?x rdfs:label ?a }
 OPTIONAL
 { ?x rdfs:comment ?b }
 OPTIONAL
 { ?x tr:insertedBy ?c }
 OPTIONAL
 { ?x rdfs:isDefinedBy ?d }
 OPTIONAL
 { ?x tr:hasInsertDate ?e }
 OPTIONAL
 { ?x owl:versionInfo ?f }
 OPTIONAL
 { ?x owl:deprecated ?g }
 OPTIONAL
 { ?x tr:hasPrescriptionLevel ?h }
 OPTIONAL
 { ?x tr:hasPriority ?i }
 OPTIONAL
 { ?x tr:useTechnology ?l }
 OPTIONAL
 { ?x tr:hasAbstractRule ?m }
 OPTIONAL
 { ?x tr:hasImplementation ?n }
 OPTIONAL
 { ?x tr:hasAbstractContext ?o }
 }

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 52 of 56

8 Conclusions

Interoperability, quick response to orders and customisation of products are the key factors for
companies that want to keep their market. This is particularly true for competitive markets as
high quality and luxury markets.

Interoperability among different systems is a crucial element for supporting smart B2B
collaborations in a dynamic network of companies that cooperates within the same supply
chain.

The need for dynamic interactions is forcing companies to abandon the old model of relations,
made by direct relations among the entrepreneurs, and to adopt the collaborative model as a
paradigm for the business.

NIMBLE moves strongly in this direction by supporting companies in implementing B2B
collaborations with few “clicks” and easing the setting up of the interaction among productive
systems. However, the complexity of the companies requires also the possibility to exchange
data and documents in an automatic way, thanks to the adoption of shared and free standards
for document templates and on agreeing on the description of the business processes to be
supported. The experience made by several organizations, ENEA among them, in supporting
companies during the process of implementing B2B collaborations by adopting standards proves
the claim that a test bed system reduces the efforts required by companies and lowers the risks,
and the costs, related to this process.

Implementing a test bed system such as TeBES in NIMBLE can ease the process of productively
using the platform, reducing the initial “friction” that structured companies (with a cumbersome
collection of management software solution) can suffer at start.

TeBES may in fact play different roles in the NIMBLE ecosystem: by supporting the developers
of software improvements (willing to check the conformance of the new modules with already
agreed specifications) as well as NIMBLE’s customers (aiming at checking the conformance of
the external in/outcoming messages from commercial partners before launching a serious and
massive B2B collaboration).

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 53 of 56

Appendix A: The NIMBLE-Order Test Plan in XML

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="http://winter.bologna.enea.it/TeBES2_Artifacts/xsl/TeBES_TestPlan.xsl" ?>
<!—
 Test Plan by TPDesigner for the TeBES Platform
 For ORDER in NIMBLE
 20180524-12:00:00
 Version=1.0
-->
<tebes:TestPlan lg="en" xmlns:tebes=http://www.ubl-italia.org/TeBES
xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance>
 <tebes:TestPlanHeader>
 <!—
 The "datetime" elements are related to the creation and last modify datetime of file.
 The state element can take 2 values: "draft" or "final"
 -->
 <tebes:Id>1</tebes:Id>
 <tebes:Name>NIMBLE-ORDER</tebes:Name>
 <tebes:State>draft</tebes:State>
 <tebes:Description lg="en">Test Plan created by TPD, defined and used for UBL-NIMBLE
ORDER.</tebes:Description>
 <tebes:Description lg="it">Test Plan creato dal TPD, definito e utilizzato per UBL-NIMBLE
ORDER.</tebes:Description>
 <tebes:UserId>0</tebes:UserId>
 <tebes:CreationDatetime>2018-05-24-T12:00:00Z</tebes:CreationDatetime>

 <tebes:LastUpdateDatetime>2018-05-24-T12:00:00Z</tebes:LastUpdateDatetime>
</tebes:TestPlanHeader>

 <tebes:TestActionList>
 <tebes:TestAction id="TA-1" number="1">

 <tebes:ActionName>TA1-TP1-NIMBLE</tebes:ActionName>
 <tebes:ActionDescription lg="en">Business rules on UBL-NIMBLE

ORDER (applied through XSD Schema Validation).</tebes:ActionDescription>
 <tebes:ActionDescription lg="it">Business rule per UBL-NIMBLE

ORDER (utilizzando validazione XML Schema).</tebes:ActionDescription>
 <tebes:Test lg="taml" type="TestAssertion"

skipPrerequisites="true"
location="http://winter.bologna.enea.it/TeBES2_Artifacts/testsuites//NIMBLE/TS-001_NIMBLE/TC-001-
XMLSchema-UBLNimble-1.xml">NIMBLE-ORDER-1</tebes:Test>

 <tebes:Inputs>
 <tebes:Input>

 <tebes:Name>IN-1_TA-1_TPD-UBL-NIMBLE</tebes:Name
 <tebes:InputDescription lg="en">Send UBL-NIMBLE

ORDER.</tebes:InputDescription>
 <tebes:InputDescription lg="it">Invia UBL-NIMBLE

ORDER.</tebes:InputDescription>
 <tebes:SUT interaction="website" type="document" lg="xml"

 fileIdRef="FI-1_document-xml-website-IN-
1_TA-1_TPD-UBL-NIMBLE"> </tebes:SUT>
 <tebes:GUI reaction="upload">
 <tebes:GUIDescription lg="en">Upload of Input with
fileIdRef = FI-1_document-xml-website-IN-1_TA-1_TPD-UBL-NIMBLE-20180524-
12:00:00.</tebes:GUIDescription>
 <tebes:GUIDescription lg="it">Upload dell'Input con
fileIdRef = FI-1_document-xml-website-IN-1_TA-1_TPD-UBL-NIMBLE-20180524-
12:00:00.</tebes:GUIDescription>
 </tebes:GUI>
 </tebes:Input>

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 54 of 56

 </tebes:Inputs>

 </tebes:TestAction>
 <!--
 Each tebes:TestAction MUST have a @number attribute used to enumerate
every action.
 The N actions will be execute from 1 to N, sequentially,
 excepted different specification expressed through the
tebes:TestPlan/tebes:Choreography element

 Each tebes:Test element MUST have a @type attribute used with one and
only one of these values:
 - "TestAssertion"
 - "TestCase"
 - "TestSuite"
 -->

</tebes:TestActionList>

<tebes:Choreography/>

</tebes:TestPlan>

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 55 of 56

Appendix B: The NIMBLE Test case with references to NIMBLE-Order

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="http://winter.bologna.enea.it/TeBES2_Artifacts/xsl/TeBES_TestSuite.xsl" ?>
<!--
 Created by TPDesigner
 For ORDER in NIMBLE
 29-05-2018
 Version=1.0
-->
<taml:testAssertionSet
 setname="Test Case for ORDER Business Rules validation" tebes:version="0.1"
 xsi:schemaLocation="http://docs.oasis-open.org/ns/tag/taml-201002/ http://docs.oasis-
open.org/tag/taml/v1.0/cs02/xsd/testAssertionMarkupLanguage.xsd"
 xmlns:taml="http://docs.oasis-open.org/ns/tag/taml-201002/"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:tebes="http://www.ubl-italia.org/TeBES" setid="TA-NIMBLE-1">

 <taml:common>
 <taml:namespaces
 xmlns:nimbleIn="https://raw.githubusercontent.com/nimble-platform/common/master/data-model/ubl-
data-model/src/main/resources/NIMBLE-UBL-2.1/maindoc/UBL-Order-2.1.xsd"/>
 <taml:namespaces
 xmlns:nimbleParty="http://winter.bologna.enea.it/TeBES2_Artifacts/xmlschemas/NIMBLE/nimple-party-
schema.xsd"/>
 </taml:common>
 <taml:testAssertion id="NIMBLE-ORDER-1" name="NIMBLE-1" tebes:isNotePresent="false">

 <taml:description>Business rules on UBL-NIMBLE ORDER (applied through XSD Schema
validation).</taml:description>

 <taml:normativeSource>
 <taml:comment/>
 <taml:refSourceItem/>
 <taml:textSourceItem/>
 </taml:normativeSource>

 <!-- <taml:var vname="NIMBLE-1"
vtype="http://purl.oclc.org/dsdl/schematron">http://winter.bologna.enea.it/tebes-
artifacts/schematrons/NIMBLE/$FILENAME</taml:var>
 -->
 <taml:var vname="NIMBLE-1" vtype="http://www.w3.org/TR/xpath20/">count(//nimbleIn:Order) ge
1</taml:var>
 <!-- XML document, target of Test -->
 <taml:target type="document" lg="xml">document</taml:target>

 <taml:predicate>NIMBLE-1</taml:predicate>

 <taml:prescription level="mandatory"/>

 <taml:report label="pass" message="UBL-NIMBLE ORDER Business Rules are satisfied.">The file is valid against
UBL-NIMBLE ORDER Business Rules.</taml:report>
 <taml:report label="fail"
 message="One or more UBL-NIMBLE ORDER Business Rules are NOT satisfied.">The file is NOT valid against
UBL-NIMBLE ORDER Business Rules.</taml:report>
 <taml:report label="notQualified"
 message="Not qualified to perform the UBL-NIMBLE ORDER Business Rules validation">The file is not

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.8 Tool for Collaboration Setup and Interoperability Testing Page 56 of 56

qualified to perform the UBL-NIMBLE ORDER Business Rules validation.</taml:report>
 </taml:testAssertion>

 <taml:testAssertion id="NIMBLE-PARTY-1" name="NIMBLE-PARTY-1" tebes:isNotePresent="false">

 <taml:description>XSD Validation of the NIMBLE Party profile (applied through XSD Schema
validation).</taml:description>

 <taml:normativeSource>
 <taml:comment/>
 <taml:refSourceItem/>
 <taml:textSourceItem/>
 </taml:normativeSource>

 <taml:var vname="NIMBLE-PARTY-1" vtype="http://www.w3.org/TR/xpath20/">count(//nimbleParty:Party) ge
1</taml:var>
 <!-- XML document, target of Test -->
 <taml:target type="document" lg="xml">document</taml:target>
<taml:predicate>NIMBLE-PARTY-1</taml:predicate>
 <taml:prescription level="mandatory"/>
 <taml:report label="pass" message="Valid NIMBLE Party document.">The file is valid against NIMBLE Party
document.</taml:report>
 <taml:report label="fail"
 message="The gile is not a valid NIMBLE Party document.">The file is NOT valid against NIMBLE Party
template.</taml:report>
 <taml:report label="notQualified"
 message="Not qualified to perform the validation">The file is not qualified to perform the NIMBLE Party
validation.</taml:report>
 </taml:testAssertion>

</taml:testAssertionSet>

