

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 1 of 20

Collaborative Network for Industry,

Manufacturing, Business and
Logistics in Europe

D3.5
Distributed Automation: Channel Management for

Production Data Sharing

Project Acronym NIMBLE

Project Title Collaboration Network for Industry, Manufacturing, Business
and Logistics in Europe

Project Number 723810

Work Package WP3 Core Business Services for the NIMBLE Platform

Lead Beneficiary

Editor Benny Mandler (IBM)

Reviewers W.Behrendt (SRFG), Benny Mandler

Contributors Johannes Innerbichler (SRFG); Suat Gonul (SRDC), Evgeniy
Hvostenko (IBM), W.Behrendt (SRFG)

Dissemination Level

Contractual Delivery Date

Actual Delivery Date

Version V1.0

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 2 of 20

Abstract

This deliverable is intended to provide a short high-level view of the design, implementation,
and deployment of the Distributed Automation: Channel Management for Production Data
Sharing capability, which gained the nick name of data channels within the NIMBLE platform.
Data channels refer to the capability of having one company providing another company a
controlled glimpse into its internal data in real-time. This capability is made available as the
result of a business relation between two entities, following the establishment of an agreed upon
business process, via which the extent and characteristics of the data to be shared are agreed.
Thus, the business relations include creating a private communication link between the
companies and enabling selective data sharing among entities.

NIMBLE in a Nutshell

NIMBLE is the collaboration Network for Industry, Manufacturing, Business and Logistics in
Europe. It will develop the infrastructure for a cloud-based, Industry 4.0, Internet-of-Things-
enabled B2B platform on which European manufacturing firms can register, publish machine-
readable catalogues for products and services, search for suitable supply chain partners,
negotiate contracts and supply logistics. In particular, this deliverable focuses on the capability
of participating companies to establish private and secure B2B and M2M information exchange
channels to optimize business work flows between them. The infrastructure will be developed as
open source software under an Apache-type, permissive license. The governance model is a
federation of platforms for multi-sided trade, with mandatory interoperation functions and
optional added-value business functions that can be provided by third parties. This will foster
the growth of a net-centric business ecosystem for sustainable innovation and fair competition
as envisaged by the Digital Agenda 2020. Prospective NIMBLE providers can take the open
source infrastructure and bundle it with sectorial, regional or functional added value services
and launch a new platform in the federation. The project started in October 2016 and will last
for 36 months.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 3 of 20

Document History

Version Date Comments

V0.1 03/04/2018 First version by IBM

V0.2 25/05/2018 Incorporate contributions from SRFG

V0.3 30/05/2018 Input from SRDC

V0.4 15/06/2018 Latest sequence diagrams added

V0.5 22/06/2018 Additions by SRFG/wb; Review by IBM/bm

V0.6 26/06/2018 Final revision by SRFG/wb

V1.0 27/06/2018 Final edits and submission by SRFG/wb

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 4 of 20

Table of Contents

NIMBLE in a Nutshell .. 2
1 Introduction ... 6
2 Conceptual design.. 7

2.1 Contracts and Clauses .. 8
2.2 Technical Concept ... 9
2.3 Technical Architecture .. 11

3 Detailed flow ... 12
3.1 Data channel definition .. 12
3.2 Data input .. 12
3.3 Real-time data processing .. 13
3.4 Data filtering ... 14
3.5 Information delivery .. 14
3.6 Data Channel Invocation and Setup ... 14

4 Interaction with the NIMBLE platform .. 16
5 Deployment ... 17
6 What is being demonstrated ... 18

List of Figures

Figure 1: Creating a NIMBLE data channel and synchronizing a local system 7
Figure 2: Data channels at run-time ... 10
Figure 3: High-level architecture for data channels ... 11
Figure 4: Manufacturer’s Setup Screen for an agreed Data Channel 13
Figure 5: Exemplary workflow of channel interaction. .. 15
Figure 6: Data channels deployment in the NIMBLE Kubernetes cluster 18
Figure 7: demo data producer .. 19
Figure 8: Demo streaming filter .. 19
Figure 9: Demo filter consumer .. 20
Figure 10: Demo non-filter consumer ... 20

List of Tables

Table 1: Acronyms table ... 5
Table 2: Details on exchanged requests in the exemplary scenario. 16

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 5 of 20

Acronyms

Table 1: Acronyms table

Acronym Meaning
API Application Programming Interface
B2B Business to business
IoT Internet of Things
JSON Java Script Object Notation
JVM Java virtual machine
NIMBLE Collaboration Network for Industry, Manufacturing, Business and

Logistics in Europe
PaaS Platform as a Service
REST Representational State Transfer
UUI Universally unique identifier

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 6 of 20

1 Introduction

This document accompanies the demonstration of the data channels capability within the
NIMBLE platform, providing the necessary background information including high level
design, deployment, and interaction with additional platform components.

The main service provided by the data channels enables one company with a scoped and secure
glimpse into internal information of another company, following an agreed upon characteristics
of the data to be shared. For example, this capability may provide a buyer of a certain product a
glimpse into progress made by the producer of the product in respect to the production of an
agreed upon order. The buyer can have a real-time view of the progress made towards
completing the order, thus it may be reassured that the delivery date is within reason or be able
to identify early signs of delays and be able to devise a “plan B” if necessary.

The design presented is scalable and flexible in the sense that it can support many such data
channels in parallel, potentially involving different players, and can sustain a high rate of
information flow within these channels.

The design builds upon established open source projects, chief among them is Apache Kafka1,
making use of available advanced features in particular streaming2, while adding the specific
capabilities required to realize the data channels. The relevant flow consists of the following
stages:

• A negotiation phase in which the scope of the visibility of a company data to another
company is agreed upon and registered in the NIMBLE platform in the form of a filter.

• The company providing its data hooks up its data producer through a Kafka topic
provided by NIMBLE.

• All incoming messages flow into the streams processing component.

• The streams processing component, based on the characteristic of the incoming
message, fetches the relevant filter, if this is the first encounter of that specific filter and
caches it internally.

• The correct filter is applied to the incoming messages and only messages that
successfully abide by the constraints dictated by the filter are sent to a specific output
topic.

• The company receiving the data can access it from the relevant output topic. As it is
envisioned that most interactions of end users with the platform would be performed
within the scope of NIMBLE platform services, all incoming data will be saved by the
platform, and presented upon polling for that information by the receiving company,
using the NIMBLE front-end web application. In the future REST endpoints may be
established for pushing data into and out of the platform, to hook up to companies’
internal systems.

The rest of this deliverable provides the conceptual design of the data channels component,
followed by a brief description of the interactions needed to set up a data channel; deployment
aspects are discussed next. Last, we elaborate on an example usage of the data filtering
capability.

1 https://kafka.apache.org/
2 https://kafka.apache.org/documentation/streams/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 7 of 20

2 Conceptual design

As described above the main aim of the data channels component is to enable a company
(company A) to securely share an agreed upon pre-defined sub-set of its data with another
company (company B). To that end the design covers a setup phase followed by a run-time
realization.

The set up phase is realized within the NIMBLE platform as a part of the negotiation process
(see Figure 1); thus, a part of the business process agreed upon between both companies
comprises the characteristics of the data that will be shared by company A and will be made
available to company B. The negotiation process may be comprised of several rounds in which
both sides attempt to reach mutual agreement.

During the negotiation process for a supply chain contract, the parties may agree that the buyer
party will be allowed to monitor parts of the other party’s manufacturing process at machine
data level, e.g. to monitor a specific quality parameter. For this to happen, at least one local ICT
service of the supplier has to be synchronised with NIMBLE. That synchronisation needs to
connect the business process (NIMBLE Contract-ID) with the manufacturing process that the
supplier has planned to satisfy the order. The agreement that is reached during a
NIMBLE business negotiation leads to the definition of a corresponding clause in a formal
business contract. The following scenario illustrates this:

Company A is a 3D printer farm with 20 different 3D printers that are online. Company A does
business as a supplier with many other manufacturing firms, one of them is Company B who is
looking for a metal printer to build a small set of 10 prototypes. In particular, they want to see
and record the quality of the print while their artefacts are being printed. Since all of the printers
are equipped with high resolution cameras, Company A agrees in the negotiation that Company
B will be able to record the printing process exactly when their products are being built. This
agreement is being recorded in a clause of the contract about the order for the prototype prints.

We assume that Company A has several metal printers so the 10 prototype items are printed on
3 different printers and thus, the printing process is recorded by 3 different cameras each
belonging to one of the printers, according to the production schedule.

Figure 1: Creating a NIMBLE data channel and synchronizing a local system

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 8 of 20

As can be seen in Figure 1, in Steps 1a and 1b the partners agree on the terms and on the
permission for Company B to monitor the printing process at Company A, for each of
the 10 items. As a result of this NIMBLE creates an abstract data channel and makes its
endpoint known. Step 2 establishes the connection between the NIMBLE platform and
the local system: the local system now connects the contract ID with the local
production schedule. In the first instance, we envisage this to be a manual or semi-
automatic step, but in the future, this synchronization should be possible automatically.
Step 3 establishes the concrete mappings of machines and sensors (in our case, 3D
printers and their video cameras) to the previously established NIMBLE channel
endpoint. Step 4 is then the consumption of the video data by the customer, according to
the previously negotiated agreement. In the figure above we only show 4 of the 10 video
objects (green arrows) purely for reasons of better legibility of the diagram.

2.1 Contracts and Clauses

We define a contract to be the result of a negotiation that happened via NIMBLE. A contract is
a formal data structure consisting of clauses.

NIMBLE contracts thus contain the promises coming out of the collaboration activities between
the trading companies. Contracts can be associated to business processes supported by NIMBLE
e.g. the order process and transport execution plan. All the preceding collaboration activities
(i.e. the processes executed between the companies) are included as clauses of the contract.

For example, assuming that the companies performed a PPAP and a negotiation process before
the order, the order contract would include two Document Clauses referring to the documents
exchanged in the PPAP and negotiation processes.

Related to the data channels, the negotiation process includes a term being used through which
the buyer company can request data monitoring service for the production processes of the
product as the subject of negotiation. As a response to this request, the seller/manufacturer
company provides its response indicating the acceptance of the term. So, once an order
following a negotiation process with an agreement on the data monitoring service provision
leads instantiation of a data channel between the trading companies as elaborated in Section 3.
 Clause =

 c_clause(cls_001, //ID of the clause within the contract

 from_date (?StartDate), // validity of the clause

 to_date (?EndDate), // end of validity of the clause

 can_monitor(

 user(?MonitoringPerson_ID, ?MonitoringFirm_ID), // this user

 company(?MonitoredFirm_ID), // in that firm

 machine(?MonitoredMachine_ID), // from that machine

 sensors(?MonitoredSensorsList), // data from that sensor

 when(// on condition that

 machined_part(?MP_ID), // the machined part on that machine

 of_order(?OrderOfMachinedPart) // belongs to this order

))).

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 9 of 20

The above design is written as a logic programming predicate (upper case terms are variables)
and can be translated into an equivalent JSON structure, for implementation.

At the time of agreeing on the contract, some elements of this structure may not be known and
fixed yet. For example, if there are several metal printers available then any one of them may be
chosen at the time when the order will actually be processed. Therefore, it is also not possible to
set at this stage the individual camera that will do the recording, because that too, will depend
on the chosen printer and on the concrete production schedule.

In the future, we also want to let users negotiate on the specific data sources related to a
production process of an order. This will be enabled by first letting users to register their IoT
data sources on NIMBLE. For example, considering the example above users will be able to
register a metal printer with a set of sensors. Then, the registered data sources will be provided
as negotiable terms e.g. to share the camera data of the printer but not the data of its humidity
sensor.

The technical concept how NIMBLE and a local manufacturing system can be connected for the
data exchange, is elaborated in the next section.

2.2 Technical Concept

A successful completion of the negotiation phase triggers the creation of a data channel between
company A and company B. The creation of the data channel includes the definition of the topic
through which the data will flow into the platform, the creation and storage of a filter to be
applied to the incoming data providing the rules restricting the data that will be made available
to company B. Finally, the output topic through which only allowed data shall flow is defined,
enabling company B to subscribe to the messages flow. As mentioned above, when accessing all
the capabilities via the NIMBLE platform, data flowing to the output topic will be stored in a
DB and be made available to company B upon polling from the platform’s front-end.

At run-time the design is comprised of an entry point, in which company A hooks up its
produced data source to the NIMBLE platform, by publishing that information as messages
using an agreed upon Kafka topic with an agreed format. Messages consist of a header and a
payload. The header contains the information by which the filtering will take place, while the
payload is the actual data to be seen by the counterpart, and is opaque as far as the data channels
infrastructure is concerned. At the heart of the data channels component is a filter which is
applied to all incoming data using the Kafka streams capability. The filtering process identifies
the filter that needs to be applied on a per message basis, fetches it from a DB if required (and
proceeds to cache it so that it is readily available for future use), and finally applies the rules of
the filter to the messages in flight. Messages that successfully passed the filtering process are
forwarded to the defined output topic for the specific interaction taking place, thus made
available to the receiving company (company B). The process is depicted at a high level in
Figure 2.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 10 of 20

Figure 2: Data channels at run-time

The main component used to realize the data channels is the open source messaging and
streaming service Kafka. This service enables the flow of data from producers to consumers in a
distributed and asynchronous manner, without the different parties necessarily being aware of
each other or the manner in which they can interact with other processes. Moreover, different
parties to the interaction do not need to be operational at the same time, but rather the
infrastructure will ensure the proper flow of data once entities connect to the system. In
addition, the streaming capabilities enable the constant processing of data in real-time as it is
being ingested into the system, processing it in a programmatic manner based on the platform
needs.

As can be seen in Figure 2, the platform supports several data channels to be run in parallel.
Each data channel is identified by a unique identifier that may be comprised of the input topic or
added to the messages as a uniquely identifying field. The central streaming capability registers
itself as a consumer of every topic which is used as a data channel input, thus all data published
reaches the streaming component which implements in turn the filtering capability. Since
multiple data channels may share the same topology, the unique identifier mentioned above is
used for retrieving and applying the correct filter corresponding to the specific message that is
being processed. The specific filter shall determine whether the data in the message should be
forwarded further to the end recipient or not. Similarly, several different output topics are
defined, and for each data channel the intended recipient of the data is connected to a specific
output topic via which only the relevant information will flow. Thus, several such data channels
interactions can be supported in parallel by the same infrastructure for different interactions.

The design further calls for a stable storage option for entities that work exclusively via the
platform front-end service, and do not introduce additional software processes in their own
premises, such as a messaging infrastructure client or a REST endpoint. At this time, we assume
that all interactions with the NIMBLE platform are performed via the web based front-end. To
that end an internal messages consumer registers itself as a listener to topics which are the
output of the filtering process, and proceeds to store each message received in a relational DB.
That information is later pulled by the end-users of the platform once they log in and ask for
information related to their active data channels. Only the intended recipient will gain access to
that information once they have been properly identified, authenticated and authorized by the
platform.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 11 of 20

2.3 Technical Architecture

The system must be integrated into the existing infrastructure of NIMBLE. Therefore,
requirements of the applied architecture are easy integration and modularity. It can thus be
adapted to individual use cases, without modules interfering with each other.

Figure 3: High-level architecture for data channels

The general architecture depicted in Figure 3 consists of three higher level component groups:

• Lightweight Microservices

• Components in the Kafka domain

• Producer and consumer components for sending and receiving messages

The following sections further describe components of each group.

Microservices

The central microservice for managing data channels is the Data Channel Service. It provides
unified endpoints for opening, configuring and closing single data channels to existing
infrastructure services (e.g. Business-Process Service). The full-fledged service serves as the
bridge to other microservices within the infrastructure components and delegates requests
further to its backend services. One such backend service is the GOST3 server, which allows
storing machine and sensor definitions in a SensorThings4 compliant format. Components in the
Kafka domain form a set of additional backend services for handling tasks related to the actual
transport of messages. The Data Channel Service stores configurations of each data channel and
makes it available to other components (e.g. components in the Kafka domain).

Kafka Domain

Kafka-related services are encapsulated in this component group. The Kafka Broker is in charge
of opening and closing Kafka topics, which can be mapped to individual data channels. Single

3 https://github.com/gost/server
4 http://www.opengeospatial.org/standards/sensorthings

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 12 of 20

messages are received by the Broker and processed based on the configuration of the channel.
The Kafka Stream Filtering component filters and multiplexes incoming messages based on the
channel configuration stored in and provided by the Data Channel Service. Custom message
formats can be defined and stored in the Avro5 component, which provides functionalities for
structured data serialization.

Producer and Consumer

Producer and consumer components are deployed and run on the premise of companies and are
in charge of sending/receiving messages with a proper format and content (e.g. channel ID). The
producer mainly communicates with the Business-Process Service for obtaining the business
context of each message. These components are not part of the cloud services provided by
NIMBLE. However, the platform will provide appropriate tools and software libraries for easing
the integration.

3 Detailed flow

3.1 Data channel definition

The starting point for the definition of a data channel is built as a part of the NIMBLE
negotiation process: As part of the negotiation, the buyer can request a data monitoring service
to be switched on for goods that belong to this specific order. The supplier can grant this right
and as a result, NIMBLE provides the customer with a handle to a data channel that is yet to be
activated, but is already set up “under the hood”. This information now constitutes a contractual
clause in the contract between the two companies and it will be executed when the supplier
starts manufacturing the agreed goods. The main resulting artefact of this setup process is a
filter configuration to be used by NIMBLE that ensures that only data identified as relevant to
the business engagement in question is shared and only the intended recipient gains access to
that data. Thus, as a part of the negotiation process the parties agree on the characteristics of the
information that will be made available to the recipient company.

The agreement as to the scope of data that will be shared is registered in the NIMBLE platform
in the form of a filter. The filter is stored in a relational DB, including an identifier that enables
the filtering capability within the streaming process to apply the correct filter to incoming data.

3.2 Data input

The company sharing data hooks up its data producer through a Kafka topic provided by
NIMBLE. The source of the information that is to be shared via the NIMBLE platform resides
internally within the supplying company. In order for the data to be made available to the
consumer company it needs to be transmitted through the platform services, such that the
filtering and further information notification can be attained. Thus, the publishing company
needs to hook up its internal data source as an input to the data channels. An example would be
to hook up a specific internet enabled machine that is used for manufacturing an item that is
being ordered by the receiving company as an input source and the filter makes sure that
information is shared only from that machine in relevant times in which a specific order is being
processed by that machine.

5 https://avro.apache.org/

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 13 of 20

Going back to the introductory motivating scenario with the 3D printing farm we established
that there is a need to connect sensors that are available locally, at the premises of the
manufacturer (i.e. the supplier) with an API that is provided by NIMBLE and furthermore, it is
necessary to synchronize the business process that was agreed on, via NIMBLE, with the local
manufacturing process that will determine when exactly, each item of the original order will be
manufactured and where. For this purpose, we have at present, a semi-automatic step that
manages the synchronization. It relies on a local manufacturing execution service that is able to
keep track of NIMBLE-generated orders and individual manufacturing items built according to
the specified contract. This step allows the supplier to map internal sensor data flows to the
NIMBLE API and to send the requested monitoring data to NIMBLE from where it can be
consumed by the buyer provided the necessary security credentials are presented.

The following screen shows how the manufacturer can map the internal data sources (sensors)
onto the NIMBLE-provided data channel.

Figure 4: Manufacturer’s Setup Screen for an agreed Data Channel
The Channel Details are the presets that NIMBLE created at the time when the contract was
agreed. The “Associated Sensors” are those that the supplier can now enable or disable,
depending on the terms of the contract. In our example, only the video cameras of the printers
will be enabled, but not the temperature sensors because the customer did not request any
temperature data.

3.3 Real-time data processing

The streaming and real-time processing of incoming data enable subscribing to topics which
supply the data that will be processed by the streaming component, and further establish output
topics to which specific results of the internal real-time processing shall be forwarded. Thus, the
streaming component is registered as a subscriber to all incoming topics and processes each one
according to its specific requirements. Thus, all incoming messages flow into the streams
processing component and are further processed via the logic of that component.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 14 of 20

3.4 Data filtering

The streams processing component logic is realized as a dynamic data filter. The basic
capability provided by the filter is whether a specific input message is to be passed on to the
corresponding recipient or whether it should be dropped, taking into account the established
visibility rules between the companies for the current interaction. The generic implementation
of the dynamic filter starts by fetching the relevant filter based on a unique characteristic of the
specific incoming message which is being processed at the time. Once the filter has been
instantiated this component parses the message and applies the specific filtering rules to it. A
message that has successfully passed the filtering action is than forwarded to be published on
the agreed upon output topic.

Currently the filter format is represented as a list of key-value pairs encoded in a JSON format.
The filtering is performed on the header of each incoming message, checking that indeed all the
key-value pairs indicated in the filter have corresponding entries in the inspected message.

Specific filters are first inserted into a relational DB. Upon identification of a new interaction by
the streaming component, the relevant filter is retrieved by the streaming component and is
cached locally for faster future operation.

3.5 Information delivery

The last stage in this process calls for making the relevant information available to the intended
recipient. First and foremost, the recipient company can access incoming data by registering
itself as a subscriber of the specific output topic. Nevertheless, as it is currently envisioned that
most interactions of end-users would be performed within the scope of the NIMBLE platform,
data channels support shall be integrated within the NIMBLE web based front-end. Thus, all
incoming data will be saved by the platform in a relational DB and presented upon polling for
that information by the receiving company, using the NIMBLE front-end web application.

3.6 Data Channel Invocation and Setup

The precise internal procedures for establishing a channel and exchanging messages are shown
in Figure 5. It is assumed that necessary configuration parameters are concluded in a preceding
business process. The scenario starts at the end of the business process and describes the
mechanisms for creating a channel and exchanging messages on it.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 15 of 20

Figure 5: Exemplary workflow of channel interaction.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 16 of 20

The following table further describes single interactions and corresponding information being
exchanged.

Step Involved
entities Description Exchanged information

Create
channel

Business-
Process
Service

Data
Channel
Service

The Business-Process Service
triggers the creation of a data
channel with proper
parameters. The configuration
of the channel is stored in the
Data Channel Service.

Initializ
e
Channel

Data
Channel
Service

Kafka
Broker

Necessary Kafka topics are
set up and initialized via the
Kafka Broker.

Map
Order
ID

Producer

Data
Channel
Service

The producer obtains the
proper business context by
mapping the order ID to a
specific data channel ID.

Publish
Message

Producer

Kafka
Broker

Messages are published in an
appropriate format (i.e. header
and payload). The header of
each message contains the
channel ID, which is used for
further filtering and
multiplexing.

Message
Filtering

Kafka
Broker

Kafka
Stream
Filtering

The Kafka Broker receives
incoming messages and
performs proper filtering
based on the configuration of
the channel.

Message
Forward
ing

Kafka
Broker

Consumer

After the appropriate
consumers (e.g. companies)
were defined, the message is
forwarded accordingly to the
output topic defined.

Table 2: Details on exchanged requests in the exemplary scenario.

4 Interaction with the NIMBLE platform

The main interaction of the data channels component is with the NIMBLE platform front-end.
The creation and initiation of a new data channel is performed through the front-end as the
culmination of a business process negotiation among different parties. Data reception is made
accessible via the dashboard corresponding to the entity authorized to receive the filtered
information.

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 17 of 20

At the back-end this component makes use of NIMBLE wide cloud services, chief among them
is an instance of MessageHub6 (messaging as a service hosted by the IBM cloud, BlueMix7),
and an instance of PostgreSQL DB8 which is hosted as a cloud service by BlueMix as well.

The data channels input and output, governing its interaction with other components, is made
through the topics supported by the messaging service. The input point into the data channels is
via a topic to which the data channel component is subscribed to receive all messages published
on that topic. As an output another topic is being used to which the data channels component
publishes all messages that have been approved by the corresponding filter. A company sharing
data attaches the data to be shared to the corresponding input topic of the data channels
component.

The corresponding filters are stored in a relational DB and fetched and cached within the data
channels component upon demand. Furthermore, the DB is used to store messages published by
the data channels, to be presented to the corresponding user upon polling for that information
via the front-end service.

5 Deployment

The data channels component is deployed as a service within the NIMBLE Kubernetes cluster
hosting the entire NIMBLE platform (see Figure 6). The entry point of the cluster is accessible
via the following URL: https://nimble-platform.uk-south.containers.mybluemix.net/. The
messaging service used is an instance of MessageHub named Message Hub-Nimble which is
accessible via a replicated set of servers accessible via the following URLs:
kafka[01..05]-prod02.messagehub.services.eu-gb.bluemix.net:9093

The DB used is an instance of PostgreSQL hosted by BlueMix, named NIMBLE-Main-Prod,
which is accessible at the following location:
sl-eu-lon-2-portal.5.dblayer.com:21113/compose

6 https://developer.ibm.com/messaging/message-hub/
7 https://www.ibm.com/cloud/
8 https://console.bluemix.net/catalog/services/compose-for-postgresql

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 18 of 20

Figure 6: Data channels deployment in the NIMBLE Kubernetes cluster

6 What is being demonstrated

For the purposes of this demonstration we opted for a simple data channel definition which
includes a visibility rule corresponding to a date and a specific machine as the source. The
corresponding filter may be defined in the following manner:

Permission is granted by the agreed upon filter to share information produced in a specific date,
for all information coming from machine_id_1. There are three main components in this
demonstration, namely, a data producer, streaming filter, and a data consumer.

The data producer in this demonstration sends messages through the agreed upon topic using the
current date, a randomly selected machine as its source, accompanied by a random payload. An
example of a sequence of messages produced by this component can be seen in Figure 7.

Filter { Date : XXX,

MachineId : XXX }

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 19 of 20

Figure 7: demo data producer
The streaming filter operation is depicted in Figure 8. In the figure one can view the data
consumed by the filter, which corresponds to all the data that has been produced by the sample
producer. Moreover, the figure demonstrates the application of the filter to the corresponding
input in question, in which messages that abide by the corresponding filter are marked to be
passed to the output topic, while messages denied by the filter are marked as such. In a
production environment messages which got filtered out would be dropped altogether. For the
purpose of the demonstration we created another topic to which all these messages are
forwarded. At the upper part of the figure one can view the streaming process querying the
filters DB to obtain the specific filter corresponding to the messages in question.

Figure 8: Demo streaming filter
Finally, two end consumers are presented. First a consumer representing the company on the
receiving end of the data channel which receives only the data that has managed to pass the

NIMBLE Collaboration Network for Industry, Manufacturing, Business and Logistics in Europe

© D3.5 Distributed Automation: Channel Management for Production Data Sharing Page 20 of 20

filter (see Figure 9). Second, as mentioned above, for demo purposes we created another
consumer which receives all the messages dropped by the filter (see Figure 10).

Figure 9: Demo filter consumer

Figure 10: Demo non-filter consumer

